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Hopf-Galois Structures and Isomorphic Holomorphs

Suppose L/K is Galois with group G = Gal(L/K ) and that L/K is
Hopf-Galois, corresponding to a regular subgroup N ≤ B = Perm(G )
where λ(G ) ≤ NormB (N).

If NormB (N) has a regular subgroup N ′ for which
NormB (N

′) = NormB (N) then λ(G ) ≤ NormB (N
′) of course, and

therefore N ′ gives rise to a Hopf-Galois structure as well.

The prototype example of this is the case when N ′ = Nopp = CentB(N).
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And somewhat more generally, this arises naturally in the study of the
multiple holomorph,

NHol(N) = NormB (NormB (N))

whose size (and action on N by conjugation) determines the set H(N), of
those regular, normal subgroups of NormB (N) ∼= Hol(N) that are
isomorphic to N, where NormB (N) = NormB (N

′)
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More generally however, the condition that NormB (N) = NormB (N
′), for

N ′ another regular subgroup of NormB (N), does not automatically imply
that N ∼= N ′.

Given that NormB (N) ∼= Hol(N) ∼= N ⋊ Aut(N) it stands to reason that
the existence of such an N ′ would imply (by size considerations at the very
least) that |Aut(N)| = |Aut(N ′)|, or more possibly that
Aut(N) ∼= Aut(N ′).

To see the connection with bi-skew braces, we shall proceed with a bit of
formality.
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Classes of Regular Subgroups

For X a finite set where |X | = n, we consider the totality of all
isomorphism classes of groups of order n embedded as regular subgroups
of B = Perm(X ), namely {G1, . . . ,Gm}.

For each such G ≤ B one may form the normalizer Hol(G ) = NormB (G )
which is canonically isomorphic to the classic holomorph of G , namely
G ⋊ Aut(G ).

Note, we are not focusing on regularity defined in terms of the left regular
representation of a single group G embedded as λ(G ) in Perm(G ).
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The other principal observation is this:

For the regular subgroups {G1, . . . ,Gm} contained in B = Perm(X ),
chosen from the distinct isomorphism classes, if N ≤ Perm(X ) is any
regular subgroup, then obviously N ∼= Gi for exactly one Gi , and therefore
N = βGiβ

−1 for some β ∈ B .

Moreover, N = β̃Gi β̃
−1 if any only if β̃ ∈ βHol(Gi ).
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For any paring (Gj ,Gi ) we can define

S(Gj , [Gi ]) = {M ≤ Hol(Gj) | M is regular and M ∼= Gi}

R(Gi , [Gj ]) = {N ≤ B | N is regular and Gi ≤ Hol(N) and N ∼= Gj}

which are two complementary sets of regular subgroups of B , where those
in S are contained in a fixed subgroup of B , while the other consists of
subgroups of B which may be widely dispersed within B .

The class R(Gi , [Gj ]) is of interest as it corresponds exactly to the K -Hopf
algebras H which act on a Galois extension L/K where Gal(L/K ) ∼= Gi

and H = (L[N])Gal(L/K) where N ∼= Gj .
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In particular the fundamental relationship between S(Gj , [Gi ]) and
R(Gi , [Gj ]) has been explored in [2] by Childs, in [1] by Byott, and by the
author in [4].

We present the following recapitulation of all these ideas by showing that
both sets are enumerated by the union of sets of cosets of Hol(Gi ) and of
Hol(Gj) which we shall refer to as the reflection principle.

Proposition

If B = Perm(X ) for |X | = n and {G1, . . . ,Gm} is a set of regular
subgroups of B, one from each isomorphism class of groups of order n,
then for any Gi and Gj one has

|S(Gj , [Gi ])| · |Hol(Gi )| = |R(Gi , [Gj ])| · |Hol(Gj )|.
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Proof.

(Sketch) We can parameterize the elements of S(Gj , [Gi ]) by a set of
distinct cosets

β1Hol(Gi ), . . . , βsHol(Gi )

and R(Gi , [Gj ]) by distinct cosets

α1Hol(Gj), . . . , αrHol(Gj )

The bijection we seek is as follows:

Φ :
⋃s

k=1 βkHol(Gi) →
⋃r

l=1 αlHol(Gj)

defined by Φ(βkh) = (βkh)
−1.
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The basic principle is that

βGiβ
−1 ≤ Hol(Gj)

l

Gi ≤ β−1Hol(Gj)β = Hol(β−1Gjβ)

i.e.
M = βGiβ

−1 ∈ S(Gj , [Gi ]) ↔ N = β−1Gjβ ∈ R(Gi , [Gj ])
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Since |Hol(G )| = |G | · |Aut(G )| (and all Gk have the same size obviously)
we have the following.

Corollary

For Gi and Gj as above one has

|S(Gj , [Gi ])| · |Aut(Gi)| = |R(Gi , [Gj ])| · |Aut(Gj)|.

And if |Aut(Gj)| = |Aut(Gi)| then we have the following ’cancellation’
formula relating the sizes of the sets S and R .

Corollary

If |Aut(Gj)| = |Aut(Gi)| then

|S(Gj , [Gi ])| = |R(Gi , [Gj ])|
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Regarding the elements which conjugate Gi to an element of S(Gj , [Gi ]) or
Gj to an element of R(Gi , [Gj ]) we have the following, which is, more or
less, a variant of Hall’s marriage theorem.

(Actually it stems from an earlier result due to König [5] on bijections
between sets partitioned into equal numbers of subsets.)

Lemma

If |Aut(Gj)| = |Aut(Gj)| then it is possible to choose a set of coset
representatives π(S) = {β1, . . . , βs} for which each M ∈ S(Gj , [Gi ]) is of
the from βGiβ

−1 for exactly one β ∈ π(S), so that
Φ(π(S)) = π(R) = {β−1

1 , . . . , β−1
s } parameterizes each element of

R(Gi , [Gj ]), namely that each N ∈ R(Gi , [Gj ]) is β
−1Gjβ for each

β ∈ π(S).

We’ll see the implications of this a bit later.
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Skew Braces and Bi-Skew Braces

We will cite a number of results from Guarnieri and Vendramin [3], but will
follow the notational conventions set forth in the first section, to frame
things within an ambient symmetric group B = Perm(X ) for a set X .

In [3], Guarnieri and Vendramin define a skew left brace to be a group
(A, ⋆) (termed the ’additive group’) with an additional group structure
(A, ◦) (termed the ’multiplicative’ structure) satisfying the skew-brace
relation.

Note, they use ’·’ instead of ⋆, but I’m using ⋆ as it’s become somewhat
standard notation.
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Definition

A skew left brace is a finite set X together with two operations ⋆ and ◦
such that (X , ⋆) and (X , ◦) are both groups, where the two group
operations satisfy the ’brace relation’

a ◦ (b ⋆ c) = (a ◦ b) ⋆ a−1 ⋆ (a ◦ c)

where ’a−1’ is the inverse of a in (X , ⋆).

To keep with the point of view of ⋆ and ◦ having ’equal footing’ we note
an important equivalence.
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For a set X with two group structures (X , ⋆) and (X , ◦) one may define
Λ : X → B = Perm(X ) by Λ(a)(b) = a−1 ⋆ (a ◦ b).

This is somewhat notationally different than the definition given in [3]
where they define λa(b) = a−1 ⋆ (a ◦ b) which is our Λ(a)(b).

Our motivation is to distinguish Λ from the left regular representations
λ⋆ : X → X and λ◦ : X → X induced by the ⋆ and ◦ operations.
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We have then the following.

Proposition

[3, Prop. 1.9,Cor. 1.10] The triple (X , ⋆, ◦) being a skew left brace is
equivalent to

Λ(a ◦ b)(c) = Λ(a)(Λ(b)(c))

and
Λ(a)(b ⋆ c) = Λ(a)(b) ⋆ Λ(a)(c)

for all a, b, c ∈ X.

The triple (X , ⋆, ◦) being a skew brace therefore implies that Λ is a group
homomorphism and that Λ : ((X , ◦)) → Aut((X , ⋆)).
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The connection between skew left braces and holomorphs begins with the
above mapping which has image in

Aut((X , ⋆)) ≤ NormB (λ⋆(X )) = λ∗(X )Aut((X , ⋆))

where NormB (λ⋆(X )) = Hol((X , ⋆)).

For (X , ⋆, ◦), the map Λ yields an embedding

(X , ◦) ∋ a 7→ (λ⋆(a)Λ(a))

of (X , ◦) as a regular subgroup of Hol((X , ⋆)), which, in a fairly obvious
way, recovers (X , ◦) since

λ⋆(a)Λ(a)(b) = a ⋆ a−1 ⋆ (a ◦ b)

= a ◦ b
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and similarly,

M = {(λ⋆(a)f (a)) ∈ Hol((X , ⋆)) | a ∈ X}

is a regular subgroup of Hol((X , ⋆)) if and only if

λ⋆(a)f (a) 7→ λ⋆(a)

is bijective, and if so, then one yields a group (X , ◦) given by

(a ◦ b) = λ⋆(a)f (a)(b) = a ⋆ f (b)

.

This is exactly the content of [3, Prop 4.2].
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So with the earlier notation in mind, if (X , ⋆, ◦) is a skew left brace, then
for Gj = λ⋆(X ) and Gi

∼= (X , ◦) we have M = (X , ◦) ∈ S(Gj , [Gi ]).

That is, the skew left brace structures (X , ⋆, ◦) where (X , ⋆) ∼= Gj and
(X , ◦) ∼= Gi are in direct correspondence with S(Gj , [Gi ]).

But now, as M ∈ S(Gj , [Gi ]) then M = βGiβ
−1 ≤ Hol(Gj ) which means,

symmetrically, that
Gi ≤ Hol(β−1Gjβ)

namely that N = β−1Gjβ ∈ R(Gi , [Gj ]).

The question of isomorphic skew left braces is also readily formulated
within S(Gj , [Gi ]) and R(Gi , [Gj ]).
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In [3] a pair of skew left braces (A, ·, ◦) and (A, ·,×) are isomorphic if
there is an automorphism φ ∈ Aut(A, ·) so that φ(a ◦ b) = φ(a)× φ(b).

And in terms of the regular subgroups of Hol(A) one has the following,
which we again formulate using the view of (X , ⋆) and (X , ◦) as regular
subgroups of Perm(X ).

Proposition

[3, Prop. 4.3] Isomorphic skew brace structures (X , ⋆, ◦) and (X , ⋆,×)
correspond to conjugacy classes in S(Gj , [Gi ]) under the action of Aut(Gj),
where Gj = λ⋆(X ) and (X , ◦) ∼= (X ,×) ∼= Gi .
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We can use the reflection principle to further explore this action of
Aut(Gj) on S(Gj , [Gi ]).

If M1 = βGiβ
−1 and for µ ∈ Aut(Gj) we define M2 = µβGiβ

−1µ−1 then

M1 = βGiβ
−1 ≤ Hol(Gj)

M2 = µβGiβ
−1µ−1 ≤ Hol(Gj)

and under the passage from S to R , via Φ by passing from β to β−1 and
µβ to β−1µ−1 we have

Gi ≤ Hol(β−1Gjβ)

Gi ≤ Hol(β−1µ−1Gjµβ) = Hol(β−1Gjβ)

namely that M1,M2 ∈ S(Gj , [Gi ]) correspond to a single

N = β−1µ−1Gjµβ = β−1Gjβ

in R(Gi , [Gj ]).
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The upshot of this is that elements of S(Gj , [Gi ]) in the same conjugacy
class under the action of Aut(Gj) correspond to the same element of
R(Gi , [Gj ]).

In a symmetric fashion, if Gi ≤ Hol(αGjα
−1) then for ν ∈ Aut(Gi) we

have

Gi ≤Hol(αGjα
−1)

↓

Gi = νGiν
−1 ≤Hol(ναGjα

−1ν−1)

which means that Aut(Gi) acts on R(Gi , [Gj ]).

And therefore elements of R(Gi , [Gj ]) in the same conjugacy class under
the action of Aut(Gi) correspond to the same element of S(Gj , [Gi ]).

Timothy Kohl (Boston University) Isomorphic Holomorphs and Bi-Skew Braces May 26, 2021 22 / 44



We therefore have the following equivalence.

Theorem

If S(Gj , [Gi ])/Aut(Gj) is the set of equivalence classes of S(Gj , [Gi ]) under
the action of Aut(Gj) and R(Gi , [Gj ])/Aut(Gi ) is the set of equivalence
classes of the action of Aut(Gi) on R(Gi , [Gj ]) then

|S(Gj , [Gi ])/Aut(Gj)| = |R(Gi , [Gj ])/Aut(Gi)|

via the correspondence given above.

Either of these therefore characterizes the equivalence classes of skew left
braces.
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Not only do we have the correspondence between the equivalence classes
S(Gj , [Gi ])/Aut(Gj) and R(Gi , [Gj ])/Aut(Gi ), there is a correspondence at
the level of each orbit.

Proposition

If M = βGiβ
−1 ∈ S(Gj , [Gi ]) and N = β−1Gjβ ∈ R(Gi , [Gj ]) then

|OrbAut(Gj )(M)| · |Aut(Gi)| = |OrbAut(Gi )(N)| · |Aut(Gj)|.

So we get a kind of ’miniature’ version of the reflection principle

|S(Gj , [Gi ])| · |Hol(Gi )| = |R(Gi , [Gj ])| · |Hol(Gj)|

l

|S(Gj , [Gi ])| · |Aut(Gi)| = |R(Gi , [Gj ])| · |Aut(Gj)|
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These statements about the sizes of the orbits under the actions
correspond (basically) to the sizes of the double cosets

Aut(Gj)βAut(Gi)
Φ
→ Aut(Gi)β

−1Aut(Gj)

although we could phrase this in terms of holomorphs too (with the
reflection principle in mind)

Hol(Gj)βHol(Gi )
Φ
→ Hol(Gi )β

−1Hol(Gj)

which would correspond to the statement

|OrbHol(Gj )(M)| · |Hol(Gi )| = |OrbHol(Gi )(N)| · |Hol(Gj)|.
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If |Aut(Gj)| = |Aut(Gi)| then we can say more about the orbits, the first
observation being that

|OrbAut(Gj )(M)| = |OrbAut(Gi )(N)|

and the passage from β ∈ π(S) to Φ(β) = β−1 ∈ π(R) extends in a
natural way to a bijection Φ̂ : S(Gj , [Gi ]) → R(Gi , [Gj ]) where now

Φ̂(OrbAut(Gj )(M)) = OrbAut(Gi )(N).
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Bi-Skew Braces

Now, a bi-skew brace is a set X together with two operations ⋆ and ◦ such
that

a ◦ (b ⋆ c) = (a ◦ b) ⋆ a−1 ⋆ (a ◦ c)

a ⋆ (b ◦ c) = (a ⋆ b) ◦ ā ◦ (a ⋆ c)

simultaneously.

So if we start with the skew left brace (X , ⋆, ◦) which yields a regular
subgroup M ≤ Hol((X , ⋆)), namely that M = (X , ◦), if we reverse the
roles of ⋆ and ◦ we have that λ⋆(X ) becomes a regular subgroup of
Hol((X , ◦)) = Hol(M).
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As such, if (X , ⋆) ∼= Gi and (X , ◦) ∼= Gj then if a skew left brace (X , ⋆, ◦)
is such that (X , ◦, ⋆) is also a skew left brace, we have the following.

Theorem

For (X , ⋆, ◦) a bi-skew brace as above with M ≤ Hol((X , ⋆)), where
M ∼= (X , ◦) ∼= Gi and (X , ⋆) ∼= Gj we have that

M ∈ S(Gj , [Gi ]) ∩ R(Gj , [Gi ])

and if M = βGiβ
−1 then for N = β−1Gjβ the reflection principle implies

that N ∈ S(Gi , [Gj ]) ∩ R(Gi , [Gj ]).
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The existence of a bi-skew brace therefore hinges on

S(Gj , [Gi ]) ∩ R(Gj , [Gi ])

being non-empty, and for this we consider the situation where
Hol(Gj) ∼= Hol(Gi).
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In this case, we can assume Gi and Gj are chosen so that
Hol(Gi ) = Hol(Gj) as subgroups of B = Perm(X ) and an element in
S(Gj , [Gi ]) ∩ R(Gj , [Gi ]) would be a group N, that is isomorphic to Gi ,
contained in Hol(Gj), and normalized by Gj .

But if Hol(Gi ) = Hol(Gj) and since Gi ⊳ Hol(Gi ) obviously, then
Gi ⊳ Hol(Gj) which guarantees at least one such group in this intersection.

i.e. Gi itself lies in S(Gj , [Gi ]) ∩ R(Gj , [Gi ])

Moreover, every element of H(Gi) lies in S(Gj , [Gi ]) ∩ R(Gj , [Gi ]) too.
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Isomorphic Holomorphs

For groups D and Q where |D| = |Q| one may have that
Aut(D) ∼= Aut(Q) and Hol(D) ∼= Hol(Q).

The classic example of this is the case of dihedral groups D2n and
quaternionic groups Qn of order 4n where Hol(D2n) ∼= Hol(Qn).

This implies, therefore, that Hol(D) contains a regular normal subgroup
isomorphic to Q and vice versa.
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In general, if N ⊳ Hol(Gj) is regular, where N ∼= Gi then obviously
Hol(Gj) ≤ NormB (N) ∼= Gi ⋊ Aut(Gi).

But since Hol(Gi ) = GiAz (for any z ∈ X ) where Az
∼= Aut(Gi) then

Gi ∩ Az = {1} and similarly N ∩ Az = {1} and so

NAz ≤ Hol(Gj ) ≤ NormB (N) ∼= Hol(Gi )

and so if |Aut(Gi)| = |Aut(Gj)| then |NAz | = |Hol(Gj)| = |Hol(Gi )| which
implies that Az

∼= Aut(Gj) ∼= Aut(Gi).
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As such, it is necessary that the respective automorphism groups must be
isomorphic, but it is not sufficient.

For example

Aut(Q3) ∼= Aut(D6) ∼= Aut(C6 × C2) ∼= D6

but
Hol(Q3) ∼= Hol(D6) ∼= (C3 × C3)⋊ (C2 × D4)

whereas Hol(C6 × C2) ∼= D3 × S4.
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Dihedral and Quaternionic Groups

We have the presentation for the Quaternion group of order 4n for n ≥ 3:

Qn = 〈x , t|x2n = 1, t2 = xn, txt−1 = x−1〉

where a typical element is of the form t ix j for i ∈ Z2 and j ∈ Z2n where

x j1x j2 = x j1+j2

x j1tx j2 = tx j2−j1

tx j1x j2 = tx j1+j2

tx j1tx j2 = x j2−j1+n

(t ix j)−1 = t ix(−1)(i+1)j+in

t i1x j1t i1x j2 = t i1+i2x j2+(−1)i2 j1+(i1i2)n
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The presentation of the Dihedral group D2n of order 4n for n ≥ 3 is

D2n = 〈x , t|x2n = 1, t2 = 1, t−1xt = x−1〉

where a typical element is of the form t ix j for i ∈ Z2 and j ∈ Z2n where

x j1x j2 = x j1+j2

x j1tx j2 = tx j2−j1

tx j1x j2 = tx j1+j2

tx j1tx j2 = x j2−j1

(t ix j)−1 = t ix(−1)(i+1)j

t i1x j1t i1x j2 = t i1+i2x j2+(−1)i2 j1
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Beyond these two examples, there are others.

Consider the following two groups of order 8pn for p an odd prime.

G1 = 〈t, x , z | t2, xp
n

, z4, txt−1x , [t, z ], [x , z ]〉

G2 = 〈t, x , z | t2, xp
n

, z4, txt−1x , tzt−1z , zxz−1x〉

These are somewhat obscure looking, except that they are reasonably
familiar groups.

Specifically G1
∼= Dpn × C4 and G2

∼= Cpn ⋊ D4 where in G1 the subgroup
〈t, x〉 ∼= Dpn with 〈z〉 being central, and in G2, the subgroup 〈t, z〉 ∼= D4

and 〈x〉 ∼= Cpn where t inverts x and z , and z inverts x .
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Isomorphic vs. Equal Holomorphs

As we saw above, the groups D2n and Qn can be given as different group
operations on the common set of symbols X = {taxb | a ∈ Z2; b ∈ Z2n}.

As such, both ρ(D2n) and ρ(Qn) are permutations on this set. Moreover,
the isomorphism group of both can be viewed as permutations of this set,
namely

Aut(D2n) = Aut(Qn) = {φi ,j |i ∈ Z2n, j ∈ U2n}

where φi ,j(t
axb) = tax ia+jb

where, Aut(D2n) = Aut(Qn) ∼= Hol(C2n).
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Moreover, if we denote by ρd the right regular action of D2n (as
permutations of X ), and ρq the right regular action of Qn then we have
the following equalities

ρq(x
b)φi ,j = ρd (x

b)φi ,j

ρq(tx
b)φi ,j = ρd (tx

b+n)φi+n,j

yielding the fact that, as subgroups of Perm({taxb}) we have
Hol(D2n) = Hol(Qn).
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In a similar way, the groups G1 and G2 are ’built’ on the same underlying
set X = {taxbzc} and the automorphism group of G1 and G2 are
isomorphic, but here too can be viewed as identical when viewed as
permutations of this set.

This common automorphism group is A = 〈φ(1,1), φ(0,w), ψ, τ〉 where
〈w〉 = Upn where

φ(1,1)(t) = tx φ(0,w)(t) = t ψ(t) = t τ(t) = tz2

φ(1,1)(x) = x φ(0,w)(x) = xw ψ(x) = x τ(x) = x

φ(1,1)(z) = z φ(0,w)(z) = z ψ(z) = z−1 τ(z) = z

where |φ(1,1)| = pn, |φ(0,w)| = φ(pn), |ψ| = 2, and |τ | = 2.
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So now, if we denote by ρ1 and ρ2 the corresponding right regular
representations then

Hol(G1) = 〈ρ1(t), ρ1(x), ρ1(z), φ(1,1), φ(0,w), ψ, τ〉

Hol(G2) = 〈ρ2(t), ρ2(x), ρ2(z), φ(1,1), φ(0,w), ψ, τ〉

where one can show that the bridge between these is what ’ρ1(z)’ is in
Hol(G2), (or equivalently what ρ2(z) equals in Hol(G1))

ρ1(z) = ρ2(t)ρ2(z)ψτ ∈ Hol(G2)

ρ2(z) = ρ1(t)ρ1(z)ψτ ∈ Hol(G1)

so that Hol(G1) may be regarded as equal to Hol(G2).
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Beyond just pairs with isomorphic holomorphs

We’ve just seen how having Hol(Gi ) ∼= Hol(Gj) implies the existence of a
bi-skew brace, but are there larger collections of groups (of the same
order) with isomorphic/equal holomorphs?

Yes, although these results are (at the moment) computational:

In degree 48 there are 4 groups with isomorphic holomorphs:

(C3 × D4)⋊ C2

(C3 ⋊ Q2)⋊ C2

(C3 × Q2)⋊ C2

C3 ⋊ Q4

where Q2 is the usual 8 element quaternion group, Q4 is the order 16
quaternion group, and D4 is the fourth dihedral group.
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Going still further, in degree 96 we have 8 groups with isomorphic
holomorphs:

C3 ⋊ (C4 ⋊ Q2)

C3 ⋊ ((C2 × C2).(C2 × C2 × C2))

(C4 ⋊ C4)× D3

C3 ⋊ ((C4 × C4)⋊ C2)

C3 ⋊ ((C4 × C2 × C2)⋊ C2)

C3 ⋊ ((C2 × Q2)⋊ C2)

C3 ⋊ ((C4 × C2 × C2)⋊ C2)

C3 ⋊ ((C2 × Q2)⋊ C2)

and these, like the degree 48 cases in the previous slide, and the order 8pn

groups G1 and G2, have certain structural similarities.
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Even more recently discovered (i.e. yesterday) it seems that there are
many groups of order 192 with isomorphic holomorphs.

The largest ’cluster’ of these is a family of 52 different groups.

One final observation to make is that for those {Gk} with isomorphic
holomorphs, the fact they have isomorphic holomorphs implies that they
mutually normalize each other.
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Thank you!
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Appendix - Proving the (Bi-)Skew Brace Relations

Explicitly

What we wish to demonstrate is that the set X = {t ix j |i ∈ Z2, j ∈ Z2n}
together with (X , ⋆) ∼= Qn and (X , ◦) ∼= D2n satisfy the skew-brace
relations

a ◦ (b ⋆ c) = (a ◦ b) ⋆ a−1 ⋆ (a ◦ c)

which we shall denote

D(a,Q(b, c)) = Q(Q(D(a, b),Q−1(a)),D(a, c))

and similarly if (X , ⋆) ∼= D2n and (X , ◦) ∼= Qn which we shall denote

Q(a,D(b, c)) = D(D(Q(a, b),D−1(a)),Q(a, c))

so that the two group operations on X yield a bi-skew brace.
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D(a,Q(b, c)) = Q(Q(D(a, b),Q−1(a)),D(a, c))

Let a = t i1x j1 , b = t i2x j2 , c = t i3x j3 then

D(a,Q(b, c)) = t ILxJL

Q(Q(D(a, b),Q−1(a)),D(a, c)) = t IRxJR

where

IL = i1 + i2 + i3

IR = i1 + i2 + i3

JL = j3 + (−1)i3 j2 + i2 i3 n+ (−1)i2+i3 j1

JR = j3 + (−1)i3 j1 + (−1)i1+i3
(

(−1)i1+1 j1 + i1 n + (−1)i1
(

j2 + (−1)i2 j1

)

+ (i1 + i2) i1 n
)

+ i2 (i1 + i3) n
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That IL = IR is obvious, and for the difference:

JL − JR = (−1)i3 j2 + i2 i3 n + (−1)i2+i3 j1 − (−1)i3 j1−

(−1)i1+i3
(

(−1)i1+1 j1 + i1 n + (−1)i1
(

j2 + (−1)i2 j1

)

+ (i1 + i2) i1 n
)

it’s basically a case by case analysis to show that this is always 0
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Q(a,D(b, c)) = D(D(Q(a, b),D−1(a)),Q(a, c))

Similarly, Q(a,D(b, c)) = t ILxJL and
D(D(Q(a, b),D−1(a)),Q(a, c)) = t IRxJR where

IL = i1 + i2 + i3

IR = i1 + i2 + i3

JL = j3 + (−1)i3 j2 + (−1)i2+i3 j1 + i1 (i2 + i3) n

JR = j3 + (−1)i3 j1 + i1 i3 n

+ (−1)i1+i3
(

(−1)i1+1 j1 + (−1)i1
(

j2 + (−1)i2 j1 + i1 i2 n
))

and here too, we can show that IL = IR and JL = JR .
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For the groups

G1 = 〈t, x , z | t2, xp
n

, z4, txt−1x , [t, z ], [x , z ]〉

G2 = 〈t, x , z | t2, xp
n

, z4, txt−1x , tzt−1z , zxz−1x〉

we can also demonstrate that the (bi-)skew brace relations hold.
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In both cases, each group consists of expressions of the form

X = {t ix jzk | i ∈ Z2; j ∈ Zpn ; k ∈ Z4}

and so any potential bi-skew brace structure is defined on this single set X .

We now need to determine the multiplication formulae, which arise from
the presentations above.
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In G1 the following holds:

(t i1x j1zk1)(t i2x j2zk2) = t i1+i2x j2+(−1)i1 j1zk1+k2

which is quite similar to that for Dpn obviously since 〈z〉 is central in G1.
We easily deduce from this that

(t ix jzk)−1 = t ix(−1)i+1jz−k

which we shall need later.
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In G2 the following holds:

(t i1x j1zk1)(t i2x j2zk2) = t i1x j1t i2z (−1)i2k2x j2zk2

= t i1+i2x(−1)i2 j1z (−1)i2k1x j1zk2

= t i1+i2x(−1)i2 j1x(−1)(−1)i2 k1 j2z (−1)i2k1zk2

= t i1+i2x(−1)i2 j1+(−1)(−1)i2 k1 j2z (−1)i2k1zk2

↓ since k1 = −k1 (mod 2)

= t i1+i2x(−1)i2 j1+(−1)k1 j2z (−1)i2k1+k2

which is more complicated due to z being non-central in G2.
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And we also deduce that

(t ix jzk)−1 = t ix(−1)i+k+1j1z (−1)i+1k

which is the inverse for G2.

So for the set X , if we define (for some notational consistency with the
above examples) D = (X , ◦) ∼= G1 and Q = (X , ⋆) ∼= G2 then the skew
brace relation

a ◦ (b ⋆ c) = (a ◦ b) ⋆ a−1 ⋆ (a ◦ c)

again translates to the ’function’ formulation

D(a,Q(b, c)) = Q(Q(D(a, b),Q−1(a)),D(a, c))

as we used above.
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And in reverse, if we let D = (X , ⋆) ∼= G1 and Q = (X , ◦) ∼= G2 which we
express in function form as

Q(a,D(b, c)) = D(D(Q(a, b),D−1(a)),Q(a, c))

and we wish to verify both to confirm that we have a bi-skew brace
structure on X arising from these two groups.
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D(a,Q(b, c)) = Q(Q(D(a, b),Q−1(a)),D(a, c))

We explore the first of the two brace relations.
Let a = t i1x j1zk1 , b = t i2x j2zk2 , c = t i3x j3zk3 then

D(a,Q(b, c)) = t ILxJLzKL

Q(Q(D(a, b),Q−1(a)),D(a, c)) = t IRxJR zKR

where
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IL = i1 + i2 + i3

IR = i1 + i2 + i3

↓

IL − IR = 0

JL − JR = (−1)i3 j2 + (−1)i2+i3 j1 − (−1)2 i1+i3 j2 − (−1)2 i1+i3+i2 j1+

(−1)2 i1+i3+2 k1+k2 j1 − (−1)k2+i3 j1

= (−1)i3 j2 + (−1)i2+i3 j1 − (−1)i3 j2 − (−1)i3+i2 j1+

(−1)i3+k2 j1 − (−1)k2+i3 j1

= (−1)i3+k2 j1 − (−1)k2+i3 j1

= 0

KL − KR = (−1)i3k2 − (−1)i3k2

= 0

so indeed a ◦ (b ⋆ c) = (a ◦ b) ⋆ a−1 ⋆ (a ◦ c).
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For the reversed case, we consider, for a, b and c as above, the expressions:

Q(a,D(b, c)) = t ILxJLzKL

D(D(Q(a, b),D−1(a)),Q(a, c)) = t IRxJR zKR

to see if IL = IR , JL = JR , and KL = KR but these verifications aren’t too
difficult.
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We have

IL = i1 + i2 + i3

IR = i1 + i2 + i3

↓

IL − IR = 0

JL − JR = (−1)i2+i3 j1 + (−1)k1+i3 j2 − (−1)i3 j1+

(−1)2 i1+i3 j1 − (−1)2 i1+i3+i2 j1 − (−1)2 i1+i3+k1 j2

= (−1)i2+i3 j1 + (−1)k1+i3 j2 − (−1)i3 j1+

(−1)i3 j1 − (−1)i3+i2 j1 − (−1)i3+k1 j2

= 0
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KL − KR = (−1)i2+i3k1 − (−1)i2k1 + k1 − (−1)i3k1

= (−1)i2+i3k1 + (−1)i2+1k1 + k1 + (−1)i3+1k1

=

{

(−1)i3k1 − k1 + k1 + (−1)i3+1k1 i2 = 0

(−1)1+i3k1 + k1 + k1 + (−1)i3+1k1 i2 = 1

=

{

k1 − k1 + k1 − k1 i2 = 0, i3 = 0

k1 + k1 + k1 + k1 i2 = 1, i3 = 1

= 0 (recall that k1 ∈ Z4)

so indeed a ⋆ (b ◦ c) = (a ⋆ b) ◦ a−1 ◦ (a ⋆ c).
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