Isomorphic Holomorphs and Bi-Skew Braces

Timothy Kohl
Boston University

May 26, 2021

Hopf-Galois Structures and Isomorphic Holomorphs

Suppose L / K is Galois with group $G=G a l(L / K)$ and that L / K is Hopf-Galois, corresponding to a regular subgroup $N \leq B=\operatorname{Perm}(G)$ where $\lambda(G) \leq \operatorname{Norm}_{B}(N)$.

If $\operatorname{Norm}_{B}(N)$ has a regular subgroup N^{\prime} for which
$\operatorname{Norm}_{B}\left(N^{\prime}\right)=\operatorname{Norm}_{B}(N)$ then $\lambda(G) \leq N o r m_{B}\left(N^{\prime}\right)$ of course, and therefore N^{\prime} gives rise to a Hopf-Galois structure as well.

The prototype example of this is the case when $N^{\prime}=N^{o p p}=\operatorname{Cent}_{B}(N)$.

And somewhat more generally, this arises naturally in the study of the multiple holomorph,

$$
N H o l(N)=\operatorname{Norm}_{B}\left(\operatorname{Norm}_{B}(N)\right)
$$

whose size (and action on N by conjugation) determines the set $\mathcal{H}(N)$, of those regular, normal subgroups of $\operatorname{Norm}_{B}(N) \cong \operatorname{Hol}(N)$ that are isomorphic to N, where $\operatorname{Norm}_{B}(N)=\operatorname{Norm}_{B}\left(N^{\prime}\right)$

More generally however, the condition that $\operatorname{Norm}_{B}(N)=\operatorname{Norm}_{B}\left(N^{\prime}\right)$, for N^{\prime} another regular subgroup of $N o r m_{B}(N)$, does not automatically imply that $N \cong N^{\prime}$.

Given that $\operatorname{Norm}_{B}(N) \cong \operatorname{Hol}(N) \cong N \rtimes \operatorname{Aut}(N)$ it stands to reason that the existence of such an N^{\prime} would imply (by size considerations at the very least) that $|\operatorname{Aut}(N)|=\left|\operatorname{Aut}\left(N^{\prime}\right)\right|$, or more possibly that $\operatorname{Aut}(N) \cong \operatorname{Aut}\left(N^{\prime}\right)$.

To see the connection with bi-skew braces, we shall proceed with a bit of formality.

Classes of Regular Subgroups

For X a finite set where $|X|=n$, we consider the totality of all isomorphism classes of groups of order n embedded as regular subgroups of $B=\operatorname{Perm}(X)$, namely $\left\{G_{1}, \ldots, G_{m}\right\}$.

For each such $G \leq B$ one may form the normalizer $\operatorname{Hol}(G)=\operatorname{Norm}_{B}(G)$ which is canonically isomorphic to the classic holomorph of G, namely $G \rtimes \operatorname{Aut}(G)$.

Note, we are not focusing on regularity defined in terms of the left regular representation of a single group G embedded as $\lambda(G)$ in $\operatorname{Perm}(G)$.

The other principal observation is this:
For the regular subgroups $\left\{G_{1}, \ldots, G_{m}\right\}$ contained in $B=\operatorname{Perm}(X)$, chosen from the distinct isomorphism classes, if $N \leq \operatorname{Perm}(X)$ is any regular subgroup, then obviously $N \cong G_{i}$ for exactly one G_{i}, and therefore $N=\beta G_{i} \beta^{-1}$ for some $\beta \in B$.

Moreover, $N=\tilde{\beta} G_{i} \tilde{\beta}^{-1}$ if any only if $\tilde{\beta} \in \beta \mathrm{Hol}\left(G_{i}\right)$.

For any paring $\left(G_{j}, G_{i}\right)$ we can define

$$
\begin{aligned}
& S\left(G_{j},\left[G_{i}\right]\right)=\left\{M \leq \operatorname{Hol}\left(G_{j}\right) \mid M \text { is regular and } M \cong G_{i}\right\} \\
& R\left(G_{i},\left[G_{j}\right]\right)=\left\{N \leq B \mid N \text { is regular and } G_{i} \leq \operatorname{Hol}(N) \text { and } N \cong G_{j}\right\}
\end{aligned}
$$

which are two complementary sets of regular subgroups of B, where those in S are contained in a fixed subgroup of B, while the other consists of subgroups of B which may be widely dispersed within B.

The class $R\left(G_{i},\left[G_{j}\right]\right)$ is of interest as it corresponds exactly to the K-Hopf algebras H which act on a Galois extension L / K where $G a l(L / K) \cong G_{i}$ and $H=(L[N])^{G a l(L / K)}$ where $N \cong G_{j}$.

In particular the fundamental relationship between $S\left(G_{j},\left[G_{i}\right]\right)$ and $R\left(G_{i},\left[G_{j}\right]\right)$ has been explored in [2] by Childs, in [1] by Byott, and by the author in [4].

We present the following recapitulation of all these ideas by showing that both sets are enumerated by the union of sets of cosets of $\operatorname{Hol}\left(G_{i}\right)$ and of $\operatorname{Hol}\left(G_{j}\right)$ which we shall refer to as the reflection principle.

Proposition

If $B=\operatorname{Perm}(X)$ for $|X|=n$ and $\left\{G_{1}, \ldots, G_{m}\right\}$ is a set of regular subgroups of B, one from each isomorphism class of groups of order n, then for any G_{i} and G_{j} one has

$$
\left|S\left(G_{j},\left[G_{i}\right]\right)\right| \cdot\left|\mathrm{Hol}\left(G_{i}\right)\right|=\left|R\left(G_{i},\left[G_{j}\right]\right)\right| \cdot\left|\mathrm{Hol}\left(G_{j}\right)\right|
$$

Proof.

(Sketch) We can parameterize the elements of $S\left(G_{j},\left[G_{i}\right]\right)$ by a set of distinct cosets

$$
\beta_{1} \mathrm{Hol}\left(G_{i}\right), \ldots, \beta_{s} \mathrm{Hol}\left(G_{i}\right)
$$

and $R\left(G_{i},\left[G_{j}\right]\right)$ by distinct cosets

$$
\alpha_{1} \operatorname{Hol}\left(G_{j}\right), \ldots, \alpha_{r} \operatorname{Hol}\left(G_{j}\right)
$$

The bijection we seek is as follows:

$$
\Phi: \bigcup_{k=1}^{s} \beta_{k} \operatorname{Hol}\left(G_{i}\right) \rightarrow \bigcup_{l=1}^{r} \alpha_{l} \operatorname{Hol}\left(G_{j}\right)
$$

defined by $\Phi\left(\beta_{k} h\right)=\left(\beta_{k} h\right)^{-1}$.

The basic principle is that

$$
\begin{aligned}
\beta G_{i} \beta^{-1} & \leq \operatorname{Hol}\left(G_{j}\right) \\
& \downarrow \\
G_{i} \leq \beta^{-1} \operatorname{Hol}\left(G_{j}\right) \beta & =\operatorname{Hol}\left(\beta^{-1} G_{j} \beta\right)
\end{aligned}
$$

i.e.

$$
M=\beta G_{i} \beta^{-1} \in S\left(G_{j},\left[G_{i}\right]\right) \leftrightarrow N=\beta^{-1} G_{j} \beta \in R\left(G_{i},\left[G_{j}\right]\right)
$$

Since $|\operatorname{Hol}(G)|=|G| \cdot|\operatorname{Aut}(G)|$ (and all G_{k} have the same size obviously) we have the following.

Corollary

For G_{i} and G_{j} as above one has

$$
\left|S\left(G_{j},\left[G_{i}\right]\right)\right| \cdot\left|\operatorname{Aut}\left(G_{i}\right)\right|=\left|R\left(G_{i},\left[G_{j}\right]\right)\right| \cdot\left|\operatorname{Aut}\left(G_{j}\right)\right|
$$

And if $\left|\operatorname{Aut}\left(G_{j}\right)\right|=\left|\operatorname{Aut}\left(G_{i}\right)\right|$ then we have the following 'cancellation' formula relating the sizes of the sets S and R.

Corollary

If $\left|\operatorname{Aut}\left(G_{j}\right)\right|=\left|\operatorname{Aut}\left(G_{i}\right)\right|$ then

$$
\left|S\left(G_{j},\left[G_{i}\right]\right)\right|=\left|R\left(G_{i},\left[G_{j}\right]\right)\right|
$$

Regarding the elements which conjugate G_{i} to an element of $S\left(G_{j},\left[G_{i}\right]\right)$ or G_{j} to an element of $R\left(G_{i},\left[G_{j}\right]\right)$ we have the following, which is, more or less, a variant of Hall's marriage theorem.
(Actually it stems from an earlier result due to König [5] on bijections between sets partitioned into equal numbers of subsets.)

Lemma

If $\left|\operatorname{Aut}\left(G_{j}\right)\right|=\left|\operatorname{Aut}\left(G_{j}\right)\right|$ then it is possible to choose a set of coset representatives $\pi(S)=\left\{\beta_{1}, \ldots, \beta_{s}\right\}$ for which each $M \in S\left(G_{j},\left[G_{i}\right]\right)$ is of the from $\beta G_{i} \beta^{-1}$ for exactly one $\beta \in \pi(S)$, so that $\Phi(\pi(S))=\pi(R)=\left\{\beta_{1}^{-1}, \ldots, \beta_{s}^{-1}\right\}$ parameterizes each element of $R\left(G_{i},\left[G_{j}\right]\right)$, namely that each $N \in R\left(G_{i},\left[G_{j}\right]\right)$ is $\beta^{-1} G_{j} \beta$ for each $\beta \in \pi(S)$.

We'll see the implications of this a bit later.

Skew Braces and Bi-Skew Braces

We will cite a number of results from Guarnieri and Vendramin [3], but will follow the notational conventions set forth in the first section, to frame things within an ambient symmetric group $B=\operatorname{Perm}(X)$ for a set X.

In [3], Guarnieri and Vendramin define a skew left brace to be a group (A, \star) (termed the 'additive group') with an additional group structure (A, \circ) (termed the 'multiplicative' structure) satisfying the skew-brace relation.

Note, they use '.' instead of \star, but l'm using \star as it's become somewhat standard notation.

Definition

A skew left brace is a finite set X together with two operations \star and \circ such that (X, \star) and (X, \circ) are both groups, where the two group operations satisfy the 'brace relation'

$$
a \circ(b \star c)=(a \circ b) \star a^{-1} \star(a \circ c)
$$

where ' a^{-1} ' is the inverse of a in (X, \star).
To keep with the point of view of \star and \circ having 'equal footing' we note an important equivalence.

For a set X with two group structures (X, \star) and (X, \circ) one may define $\Lambda: X \rightarrow B=\operatorname{Perm}(X)$ by $\Lambda(a)(b)=a^{-1} \star(a \circ b)$.

This is somewhat notationally different than the definition given in [3] where they define $\lambda_{a}(b)=a^{-1} \star(a \circ b)$ which is our $\Lambda(a)(b)$.

Our motivation is to distinguish Λ from the left regular representations $\lambda_{\star}: X \rightarrow X$ and $\lambda_{\circ}: X \rightarrow X$ induced by the \star and \circ operations.

We have then the following.

Proposition

[3, Prop. 1.9, Cor. 1.10] The triple (X, \star, \circ) being a skew left brace is equivalent to

$$
\Lambda(a \circ b)(c)=\Lambda(a)(\Lambda(b)(c))
$$

and

$$
\Lambda(a)(b \star c)=\Lambda(a)(b) \star \Lambda(a)(c)
$$

for all $a, b, c \in X$.
The triple (X, \star, \circ) being a skew brace therefore implies that Λ is a group homomorphism and that $\Lambda:((X, \circ)) \rightarrow \operatorname{Aut}((X, \star))$.

The connection between skew left braces and holomorphs begins with the above mapping which has image in

$$
\operatorname{Aut}((X, \star)) \leq \operatorname{Norm}_{B}\left(\lambda_{\star}(X)\right)=\lambda_{*}(X) \operatorname{Aut}((X, \star))
$$

where $\operatorname{Norm}_{B}\left(\lambda_{\star}(X)\right)=\operatorname{Hol}((X, \star))$.
For (X, \star, \circ), the map Λ yields an embedding

$$
(X, \circ) \ni a \mapsto\left(\lambda_{\star}(a) \wedge(a)\right)
$$

of (X, \circ) as a regular subgroup of $\operatorname{Hol}((X, \star))$, which, in a fairly obvious way, recovers (X, \circ) since

$$
\begin{aligned}
\lambda_{\star}(a) \wedge(a)(b) & =a \star a^{-1} \star(a \circ b) \\
& =a \circ b
\end{aligned}
$$

and similarly,

$$
M=\left\{\left(\lambda_{\star}(a) f(a)\right) \in \operatorname{Hol}((X, \star)) \mid a \in X\right\}
$$

is a regular subgroup of $\operatorname{Hol}((X, \star))$ if and only if

$$
\lambda_{\star}(a) f(a) \mapsto \lambda_{\star}(a)
$$

is bijective, and if so, then one yields a group (X, \circ) given by

$$
(a \circ b)=\lambda_{\star}(a) f(a)(b)=a \star f(b)
$$

This is exactly the content of [3, Prop 4.2].

So with the earlier notation in mind, if (X, \star, \circ) is a skew left brace, then for $G_{j}=\lambda_{\star}(X)$ and $G_{i} \cong(X, \circ)$ we have $M=(X, \circ) \in S\left(G_{j},\left[G_{i}\right]\right)$.

That is, the skew left brace structures (X, \star, \circ) where $(X, \star) \cong G_{j}$ and $(X, \circ) \cong G_{i}$ are in direct correspondence with $S\left(G_{j},\left[G_{i}\right]\right)$.

But now, as $M \in S\left(G_{j},\left[G_{i}\right]\right)$ then $M=\beta G_{i} \beta^{-1} \leq \operatorname{Hol}\left(G_{j}\right)$ which means, symmetrically, that

$$
G_{i} \leq H o l\left(\beta^{-1} G_{j} \beta\right)
$$

namely that $N=\beta^{-1} G_{j} \beta \in R\left(G_{i},\left[G_{j}\right]\right)$.
The question of isomorphic skew left braces is also readily formulated within $S\left(G_{j},\left[G_{i}\right]\right)$ and $R\left(G_{i},\left[G_{j}\right]\right)$.

In [3] a pair of skew left braces (A, \cdot, \circ) and (A, \cdot, \times) are isomorphic if there is an automorphism $\phi \in \operatorname{Aut}(A, \cdot)$ so that $\phi(a \circ b)=\phi(a) \times \phi(b)$.

And in terms of the regular subgroups of $\operatorname{Hol}(A)$ one has the following, which we again formulate using the view of (X, \star) and (X, \circ) as regular subgroups of $\operatorname{Perm}(X)$.

Proposition

[3, Prop. 4.3] Isomorphic skew brace structures (X, \star, \circ) and (X, \star, \times) correspond to conjugacy classes in $S\left(G_{j},\left[G_{i}\right]\right)$ under the action of $\operatorname{Aut}\left(G_{j}\right)$, where $G_{j}=\lambda_{\star}(X)$ and $(X, \circ) \cong(X, \times) \cong G_{i}$.

We can use the reflection principle to further explore this action of $\operatorname{Aut}\left(G_{j}\right)$ on $S\left(G_{j},\left[G_{i}\right]\right)$.

If $M_{1}=\beta G_{i} \beta^{-1}$ and for $\mu \in \operatorname{Aut}\left(G_{j}\right)$ we define $M_{2}=\mu \beta G_{i} \beta^{-1} \mu^{-1}$ then

$$
\begin{aligned}
M_{1}=\beta G_{i} \beta^{-1} & \leq \operatorname{Hol}\left(G_{j}\right) \\
M_{2}=\mu \beta G_{i} \beta^{-1} \mu^{-1} & \leq \operatorname{Hol}\left(G_{j}\right)
\end{aligned}
$$

and under the passage from S to R, via Φ by passing from β to β^{-1} and $\mu \beta$ to $\beta^{-1} \mu^{-1}$ we have

$$
\begin{aligned}
& G_{i} \leq \operatorname{Hol}\left(\beta^{-1} G_{j} \beta\right) \\
& G_{i} \leq \operatorname{Hol}\left(\beta^{-1} \mu^{-1} G_{j} \mu \beta\right)=\operatorname{Hol}\left(\beta^{-1} G_{j} \beta\right)
\end{aligned}
$$

namely that $M_{1}, M_{2} \in S\left(G_{j},\left[G_{i}\right]\right)$ correspond to a single

$$
N=\beta^{-1} \mu^{-1} G_{j} \mu \beta=\beta^{-1} G_{j} \beta
$$

in $R\left(G_{i},\left[G_{j}\right]\right)$.

The upshot of this is that elements of $S\left(G_{j},\left[G_{i}\right]\right)$ in the same conjugacy class under the action of $\operatorname{Aut}\left(G_{j}\right)$ correspond to the same element of $R\left(G_{i},\left[G_{j}\right]\right)$.

In a symmetric fashion, if $G_{i} \leq \operatorname{Hol}\left(\alpha G_{j} \alpha^{-1}\right)$ then for $\nu \in \operatorname{Aut}\left(G_{i}\right)$ we have

$$
\begin{aligned}
& G_{i} \leq \operatorname{Hol}\left(\alpha G_{j} \alpha^{-1}\right) \\
& \downarrow \\
& G_{i}=\nu G_{i} \nu^{-1} \leq \operatorname{Hol}\left(\nu \alpha G_{j} \alpha^{-1} \nu^{-1}\right)
\end{aligned}
$$

which means that $\operatorname{Aut}\left(G_{i}\right)$ acts on $R\left(G_{i},\left[G_{j}\right]\right)$.
And therefore elements of $R\left(G_{i},\left[G_{j}\right]\right)$ in the same conjugacy class under the action of $\operatorname{Aut}\left(G_{i}\right)$ correspond to the same element of $S\left(G_{j},\left[G_{i}\right]\right)$.

We therefore have the following equivalence.

Theorem

If $S\left(G_{j},\left[G_{i}\right]\right) / \operatorname{Aut}\left(G_{j}\right)$ is the set of equivalence classes of $S\left(G_{j},\left[G_{i}\right]\right)$ under the action of $\operatorname{Aut}\left(G_{j}\right)$ and $R\left(G_{i},\left[G_{j}\right]\right) / \operatorname{Aut}\left(G_{i}\right)$ is the set of equivalence classes of the action of $\operatorname{Aut}\left(G_{i}\right)$ on $R\left(G_{i},\left[G_{j}\right]\right)$ then

$$
\left|S\left(G_{j},\left[G_{i}\right]\right) / \operatorname{Aut}\left(G_{j}\right)\right|=\left|R\left(G_{i},\left[G_{j}\right]\right) / \operatorname{Aut}\left(G_{i}\right)\right|
$$

via the correspondence given above.

Either of these therefore characterizes the equivalence classes of skew left braces.

Not only do we have the correspondence between the equivalence classes $S\left(G_{j},\left[G_{i}\right]\right) / \operatorname{Aut}\left(G_{j}\right)$ and $R\left(G_{i},\left[G_{j}\right]\right) / \operatorname{Aut}\left(G_{i}\right)$, there is a correspondence at the level of each orbit.

Proposition

If $M=\beta G_{i} \beta^{-1} \in S\left(G_{j},\left[G_{i}\right]\right)$ and $N=\beta^{-1} G_{j} \beta \in R\left(G_{i},\left[G_{j}\right]\right)$ then

$$
\left|\operatorname{Orb}_{\operatorname{Aut}\left(G_{j}\right)}(M)\right| \cdot\left|\operatorname{Aut}\left(G_{i}\right)\right|=\left|\operatorname{Orb}_{\operatorname{Aut}\left(G_{i}\right)}(N)\right| \cdot\left|\operatorname{Aut}\left(G_{j}\right)\right| .
$$

So we get a kind of 'miniature' version of the reflection principle

$$
\begin{aligned}
\left|S\left(G_{j},\left[G_{i}\right]\right)\right| \cdot\left|\operatorname{Hol}\left(G_{i}\right)\right| & =\left|R\left(G_{i},\left[G_{j}\right]\right)\right| \cdot\left|\operatorname{Hol}\left(G_{j}\right)\right| \\
& \imath \\
\left|S\left(G_{j},\left[G_{i}\right]\right)\right| \cdot\left|\operatorname{Aut}\left(G_{i}\right)\right| & =\left|R\left(G_{i},\left[G_{j}\right]\right)\right| \cdot\left|\operatorname{Aut}\left(G_{j}\right)\right|
\end{aligned}
$$

These statements about the sizes of the orbits under the actions correspond (basically) to the sizes of the double cosets

$$
\operatorname{Aut}\left(G_{j}\right) \beta \operatorname{Aut}\left(G_{i}\right) \xrightarrow{\Phi} \operatorname{Aut}\left(G_{i}\right) \beta^{-1} \operatorname{Aut}\left(G_{j}\right)
$$

although we could phrase this in terms of holomorphs too (with the reflection principle in mind)

$$
\mathrm{Hol}\left(G_{j}\right) \beta \mathrm{Hol}\left(G_{i}\right) \xrightarrow{\Phi} \mathrm{Hol}\left(G_{i}\right) \beta^{-1} \mathrm{Hol}\left(G_{j}\right)
$$

which would correspond to the statement

$$
\left|\operatorname{Orb}_{\mathrm{Hol}\left(G_{j}\right)}(M)\right| \cdot\left|\mathrm{Hol}\left(G_{i}\right)\right|=\left|\operatorname{Orb}_{\mathrm{Hol}\left(G_{i}\right)}(N)\right| \cdot\left|\mathrm{Hol}\left(G_{j}\right)\right| .
$$

If $\left|\operatorname{Aut}\left(G_{j}\right)\right|=\left|\operatorname{Aut}\left(G_{i}\right)\right|$ then we can say more about the orbits, the first observation being that

$$
\left|\operatorname{Orb}_{\operatorname{Aut}\left(G_{j}\right)}(M)\right|=\left|\operatorname{Orb}_{\operatorname{Aut}\left(G_{i}\right)}(N)\right|
$$

and the passage from $\beta \in \pi(S)$ to $\Phi(\beta)=\beta^{-1} \in \pi(R)$ extends in a natural way to a bijection $\hat{\Phi}: S\left(G_{j},\left[G_{i}\right]\right) \rightarrow R\left(G_{i},\left[G_{j}\right]\right)$ where now $\hat{\Phi}\left(\operatorname{Orb}_{A u t\left(G_{j}\right)}(M)\right)=\operatorname{Orb}_{\operatorname{Aut}\left(G_{i}\right)}(N)$.

Bi-Skew Braces

Now, a bi-skew brace is a set X together with two operations \star and o such that

$$
\begin{aligned}
& a \circ(b \star c)=(a \circ b) \star a^{-1} \star(a \circ c) \\
& a \star(b \circ c)=(a \star b) \circ \bar{a} \circ(a \star c)
\end{aligned}
$$

simultaneously.
So if we start with the skew left brace (X, \star, \circ) which yields a regular subgroup $M \leq \operatorname{Hol}((X, \star))$, namely that $M=(X, \circ)$, if we reverse the roles of \star and \circ we have that $\lambda_{\star}(X)$ becomes a regular subgroup of $\mathrm{Hol}((X, \circ))=\operatorname{Hol}(M)$.

As such, if $(X, \star) \cong G_{i}$ and $(X, \circ) \cong G_{j}$ then if a skew left brace (X, \star, \circ) is such that $(X, 0, \star)$ is also a skew left brace, we have the following.

Theorem

For (X, \star, \circ) a bi-skew brace as above with $M \leq \operatorname{Hol}((X, \star))$, where $M \cong(X, \circ) \cong G_{i}$ and $(X, \star) \cong G_{j}$ we have that

$$
M \in S\left(G_{j},\left[G_{i}\right]\right) \cap R\left(G_{j},\left[G_{i}\right]\right)
$$

and if $M=\beta G_{i} \beta^{-1}$ then for $N=\beta^{-1} G_{j} \beta$ the reflection principle implies that $N \in S\left(G_{i},\left[G_{j}\right]\right) \cap R\left(G_{i},\left[G_{j}\right]\right)$.

The existence of a bi-skew brace therefore hinges on

$$
S\left(G_{j},\left[G_{i}\right]\right) \cap R\left(G_{j},\left[G_{i}\right]\right)
$$

being non-empty, and for this we consider the situation where $\operatorname{Hol}\left(G_{j}\right) \cong \operatorname{Hol}\left(G_{i}\right)$.

In this case, we can assume G_{i} and G_{j} are chosen so that $\operatorname{Hol}\left(G_{i}\right)=\operatorname{Hol}\left(G_{j}\right)$ as subgroups of $B=\operatorname{Perm}(X)$ and an element in $S\left(G_{j},\left[G_{i}\right]\right) \cap R\left(G_{j},\left[G_{i}\right]\right)$ would be a group N, that is isomorphic to G_{i}, contained in $\mathrm{Hol}\left(G_{j}\right)$, and normalized by G_{j}.

But if $\mathrm{Hol}\left(G_{i}\right)=\operatorname{Hol}\left(G_{j}\right)$ and since $G_{i} \triangleleft \mathrm{Hol}\left(G_{i}\right)$ obviously, then $G_{i} \triangleleft \operatorname{Hol}\left(G_{j}\right)$ which guarantees at least one such group in this intersection.
i.e. G_{i} itself lies in $S\left(G_{j},\left[G_{i}\right]\right) \cap R\left(G_{j},\left[G_{i}\right]\right)$

Moreover, every element of $\mathcal{H}\left(G_{i}\right)$ lies in $S\left(G_{j},\left[G_{i}\right]\right) \cap R\left(G_{j},\left[G_{i}\right]\right)$ too.

Isomorphic Holomorphs

For groups D and Q where $|D|=|Q|$ one may have that $\operatorname{Aut}(D) \cong \operatorname{Aut}(Q)$ and $\operatorname{Hol}(D) \cong \operatorname{Hol}(Q)$.

The classic example of this is the case of dihedral groups $D_{2 n}$ and quaternionic groups Q_{n} of order $4 n$ where $\operatorname{Hol}\left(D_{2 n}\right) \cong \operatorname{Hol}\left(Q_{n}\right)$.

This implies, therefore, that $\operatorname{Hol}(D)$ contains a regular normal subgroup isomorphic to Q and vice versa.

In general, if $N \triangleleft \operatorname{Hol}\left(G_{j}\right)$ is regular, where $N \cong G_{i}$ then obviously $\operatorname{Hol}\left(G_{j}\right) \leq \operatorname{Norm}_{B}(N) \cong G_{i} \rtimes \operatorname{Aut}\left(G_{i}\right)$.

But since $\operatorname{Hol}\left(G_{i}\right)=G_{i} A_{z}$ (for any $z \in X$) where $A_{z} \cong \operatorname{Aut}\left(G_{i}\right)$ then $G_{i} \cap A_{z}=\{1\}$ and similarly $N \cap A_{z}=\{1\}$ and so

$$
N A_{z} \leq \operatorname{Hol}\left(G_{j}\right) \leq \operatorname{Norm}_{B}(N) \cong \operatorname{Hol}\left(G_{i}\right)
$$

and so if $\left|\operatorname{Aut}\left(G_{i}\right)\right|=\left|\operatorname{Aut}\left(G_{j}\right)\right|$ then $\left|N A_{z}\right|=\left|\operatorname{Hol}\left(G_{j}\right)\right|=\left|\operatorname{Hol}\left(G_{i}\right)\right|$ which implies that $A_{z} \cong \operatorname{Aut}\left(G_{j}\right) \cong \operatorname{Aut}\left(G_{i}\right)$.

As such, it is necessary that the respective automorphism groups must be isomorphic, but it is not sufficient.

For example

$$
\operatorname{Aut}\left(Q_{3}\right) \cong \operatorname{Aut}\left(D_{6}\right) \cong \operatorname{Aut}\left(C_{6} \times C_{2}\right) \cong D_{6}
$$

but

$$
\mathrm{Hol}\left(Q_{3}\right) \cong \mathrm{Hol}\left(D_{6}\right) \cong\left(C_{3} \times C_{3}\right) \rtimes\left(C_{2} \times D_{4}\right)
$$

whereas $\mathrm{Hol}\left(C_{6} \times C_{2}\right) \cong D_{3} \times S_{4}$.

Dihedral and Quaternionic Groups

We have the presentation for the Quaternion group of order $4 n$ for $n \geq 3$:

$$
Q_{n}=\left\langle x, t \mid x^{2 n}=1, t^{2}=x^{n}, t x t^{-1}=x^{-1}\right\rangle
$$

where a typical element is of the form $t^{i} x^{j}$ for $i \in \mathbb{Z}_{2}$ and $j \in \mathbb{Z}_{2 n}$ where

$$
\begin{aligned}
x^{j_{1}} x^{j_{2}} & =x^{j_{1}+j_{2}} \\
x^{j_{1}} t x^{j_{2}} & =t x^{j_{2}-j_{1}} \\
t x^{j_{1}} x^{j_{2}} & =t x^{j_{1}+j_{2}} \\
t x^{j_{1}} t x^{j_{2}} & =x^{j_{2}-j_{1}+n} \\
\left(t^{i} x^{j}\right)^{-1} & =t^{i} x^{(-1)^{(i+1)} j_{+i n}} \\
t^{i_{1}} x^{j_{1}} t^{i_{1}} x^{j_{2}} & =t^{i_{1}+i_{2}} x^{j_{2}+(-1)^{i_{2}} j_{1}+\left(i_{1} i_{2}\right) n}
\end{aligned}
$$

The presentation of the Dihedral group $D_{2 n}$ of order $4 n$ for $n \geq 3$ is

$$
D_{2 n}=\left\langle x, t \mid x^{2 n}=1, t^{2}=1, t^{-1} x t=x^{-1}\right\rangle
$$

where a typical element is of the form $t^{i} x^{j}$ for $i \in \mathbb{Z}_{2}$ and $j \in \mathbb{Z}_{2 n}$ where

$$
\begin{aligned}
x^{j_{1}} x^{j_{2}} & =x^{j_{1}+j_{2}} \\
x^{j_{1}} t x^{j_{2}} & =t x^{j_{2}-j_{1}} \\
t x^{j_{1}} x^{j_{2}} & =t x^{j_{1}+j_{2}} \\
t x^{j_{1}} t x^{j_{2}} & =x^{j_{2}-j_{1}} \\
\left(t^{i} x^{j_{1}}\right)^{-1} & =t^{i^{\prime}} x^{(-1)^{(i+1)} j} \\
t^{i_{1}} x^{j_{1}} t^{i_{1}} x^{j_{2}} & =t^{i_{1}+i_{2}} x^{j_{2}+(-1)^{i_{2}} j_{1}}
\end{aligned}
$$

Beyond these two examples, there are others.
Consider the following two groups of order $8 p^{n}$ for p an odd prime.

$$
\begin{aligned}
& G_{1}=\left\langle t, x, z \mid t^{2}, x^{p^{n}}, z^{4}, t x t^{-1} x,[t, z],[x, z]\right\rangle \\
& G_{2}=\left\langle t, x, z \mid t^{2}, x^{p^{n}}, z^{4}, t x t^{-1} x, t z t^{-1} z, z x z^{-1} x\right\rangle
\end{aligned}
$$

These are somewhat obscure looking, except that they are reasonably familiar groups.

Specifically $G_{1} \cong D_{p^{n}} \times C_{4}$ and $G_{2} \cong C_{p^{n}} \rtimes D_{4}$ where in G_{1} the subgroup $\langle t, x\rangle \cong D_{p^{n}}$ with $\langle z\rangle$ being central, and in G_{2}, the subgroup $\langle t, z\rangle \cong D_{4}$ and $\langle x\rangle \cong C_{p^{n}}$ where t inverts x and z, and z inverts x.

Isomorphic vs. Equal Holomorphs

As we saw above, the groups $D_{2 n}$ and Q_{n} can be given as different group operations on the common set of symbols $X=\left\{t^{a} x^{b} \mid a \in \mathbb{Z}_{2} ; b \in \mathbb{Z}_{2 n}\right\}$.

As such, both $\rho\left(D_{2 n}\right)$ and $\rho\left(Q_{n}\right)$ are permutations on this set. Moreover, the isomorphism group of both can be viewed as permutations of this set, namely

$$
\begin{aligned}
\operatorname{Aut}\left(D_{2 n}\right) & =\operatorname{Aut}\left(Q_{n}\right)=\left\{\phi_{i, j} \mid i \in \mathbb{Z}_{2 n}, j \in U_{2 n}\right\} \\
& \text { where } \phi_{i, j}\left(t^{a} x^{b}\right)=t^{a} x^{i a+j b}
\end{aligned}
$$

where, $\operatorname{Aut}\left(D_{2 n}\right)=\operatorname{Aut}\left(Q_{n}\right) \cong \operatorname{Hol}\left(C_{2 n}\right)$.

Moreover, if we denote by ρ_{d} the right regular action of $D_{2 n}$ (as permutations of X), and ρ_{q} the right regular action of Q_{n} then we have the following equalities

$$
\begin{aligned}
\rho_{q}\left(x^{b}\right) \phi_{i, j} & =\rho_{d}\left(x^{b}\right) \phi_{i, j} \\
\rho_{q}\left(t x^{b}\right) \phi_{i, j} & =\rho_{d}\left(t x^{b+n}\right) \phi_{i+n, j}
\end{aligned}
$$

yielding the fact that, as subgroups of $\operatorname{Perm}\left(\left\{t^{a} x^{b}\right\}\right)$ we have $\operatorname{Hol}\left(D_{2 n}\right)=\operatorname{Hol}\left(Q_{n}\right)$.

In a similar way, the groups G_{1} and G_{2} are 'built' on the same underlying set $X=\left\{t^{a} x^{b} z^{c}\right\}$ and the automorphism group of G_{1} and G_{2} are isomorphic, but here too can be viewed as identical when viewed as permutations of this set.

This common automorphism group is $A=\left\langle\phi_{(1,1)}, \phi_{(0, w)}, \psi, \tau\right\rangle$ where $\langle w\rangle=U_{p^{n}}$ where

$\phi_{(1,1)}(t)=t x$	$\phi_{(0, w)}(t)=t$	$\psi(t)=t$	$\tau(t)=t z^{2}$
$\phi_{(1,1)}(x)=x$	$\phi_{(0, w)}(x)=x^{w}$	$\psi(x)=x$	$\tau(x)=x$
$\phi_{(1,1)}(z)=z$	$\phi_{(0, w)}(z)=z$	$\psi(z)=z^{-1}$	$\tau(z)=z$

where $\left|\phi_{(1,1)}\right|=p^{n},\left|\phi_{(0, w)}\right|=\phi\left(p^{n}\right),|\psi|=2$, and $|\tau|=2$.

So now, if we denote by ρ_{1} and ρ_{2} the corresponding right regular representations then

$$
\begin{aligned}
& \operatorname{Hol}\left(G_{1}\right)=\left\langle\rho_{1}(t), \rho_{1}(x), \rho_{1}(z), \phi_{(1,1)}, \phi_{(0, w)}, \psi, \tau\right\rangle \\
& \operatorname{Hol}\left(G_{2}\right)=\left\langle\rho_{2}(t), \rho_{2}(x), \rho_{2}(z), \phi_{(1,1)}, \phi_{(0, w)}, \psi, \tau\right\rangle
\end{aligned}
$$

where one can show that the bridge between these is what ' $\rho_{1}(z)$ ' is in $\mathrm{Hol}\left(G_{2}\right)$, (or equivalently what $\rho_{2}(z)$ equals in $\operatorname{Hol}\left(G_{1}\right)$)

$$
\begin{aligned}
& \rho_{1}(z)=\rho_{2}(t) \rho_{2}(z) \psi \tau \in \operatorname{Hol}\left(G_{2}\right) \\
& \rho_{2}(z)=\rho_{1}(t) \rho_{1}(z) \psi \tau \in \operatorname{Hol}\left(G_{1}\right)
\end{aligned}
$$

so that $\mathrm{Hol}\left(G_{1}\right)$ may be regarded as equal to $\operatorname{Hol}\left(G_{2}\right)$.

Beyond just pairs with isomorphic holomorphs

We've just seen how having $\operatorname{Hol}\left(G_{i}\right) \cong \operatorname{Hol}\left(G_{j}\right)$ implies the existence of a bi-skew brace, but are there larger collections of groups (of the same order) with isomorphic/equal holomorphs?

Yes, although these results are (at the moment) computational:
In degree 48 there are 4 groups with isomorphic holomorphs:

$$
\begin{aligned}
& \left(C_{3} \times D_{4}\right) \rtimes C_{2} \\
& \left(C_{3} \rtimes Q_{2}\right) \rtimes C_{2} \\
& \left(C_{3} \times Q_{2}\right) \rtimes C_{2} \\
& C_{3} \rtimes Q_{4}
\end{aligned}
$$

where Q_{2} is the usual 8 element quaternion group, Q_{4} is the order 16 quaternion group, and D_{4} is the fourth dihedral group.

Going still further, in degree 96 we have 8 groups with isomorphic holomorphs:

$$
\begin{aligned}
& C_{3} \rtimes\left(C_{4} \rtimes Q_{2}\right) \\
& C_{3} \rtimes\left(\left(C_{2} \times C_{2}\right) \cdot\left(C_{2} \times C_{2} \times C_{2}\right)\right) \\
& \left(C_{4} \rtimes C_{4}\right) \times D_{3} \\
& C_{3} \rtimes\left(\left(C_{4} \times C_{4}\right) \rtimes C_{2}\right) \\
& C_{3} \rtimes\left(\left(C_{4} \times C_{2} \times C_{2}\right) \rtimes C_{2}\right) \\
& C_{3} \rtimes\left(\left(C_{2} \times Q_{2}\right) \rtimes C_{2}\right) \\
& C_{3} \rtimes\left(\left(C_{4} \times C_{2} \times C_{2}\right) \rtimes C_{2}\right) \\
& C_{3} \rtimes\left(\left(C_{2} \times Q_{2}\right) \rtimes C_{2}\right)
\end{aligned}
$$

and these, like the degree 48 cases in the previous slide, and the order $8 p^{n}$ groups G_{1} and G_{2}, have certain structural similarities.

Even more recently discovered (i.e. yesterday) it seems that there are many groups of order 192 with isomorphic holomorphs.

The largest 'cluster' of these is a family of 52 different groups.
One final observation to make is that for those $\left\{G_{k}\right\}$ with isomorphic holomorphs, the fact they have isomorphic holomorphs implies that they mutually normalize each other.

Thank you!

Appendix - Proving the (Bi-)Skew Brace Relations Explicitly

What we wish to demonstrate is that the set $X=\left\{t^{i} x^{j} \mid i \in \mathbb{Z}_{2}, j \in \mathbb{Z}_{2 n}\right\}$ together with $(X, \star) \cong Q_{n}$ and $(X, \circ) \cong D_{2 n}$ satisfy the skew-brace relations

$$
a \circ(b \star c)=(a \circ b) \star a^{-1} \star(a \circ c)
$$

which we shall denote

$$
D(a, Q(b, c))=Q\left(Q\left(D(a, b), Q^{-1}(a)\right), D(a, c)\right)
$$

and similarly if $(X, \star) \cong D_{2 n}$ and $(X, \circ) \cong Q_{n}$ which we shall denote

$$
Q(a, D(b, c))=D\left(D\left(Q(a, b), D^{-1}(a)\right), Q(a, c)\right)
$$

so that the two group operations on X yield a bi-skew brace.

$D(a, Q(b, c))=Q\left(Q\left(D(a, b), Q^{-1}(a)\right), D(a, c)\right)$

Let $a=t^{i_{1}} x^{j_{1}}, b=t^{i_{2}} x^{j_{2}}, c=t^{i_{3}} x^{j_{3}}$ then

$$
\begin{array}{r}
D(a, Q(b, c))=t^{L_{X} J_{L}} \\
Q\left(Q\left(D(a, b), Q^{-1}(a)\right), D(a, c)\right)=t^{R_{X} X_{R}}
\end{array}
$$

where

$$
\begin{aligned}
I_{L} & =i_{1}+i_{2}+i_{3} \\
I_{R} & =i_{1}+i_{2}+i_{3} \\
J_{L} & =j_{3}+(-1)^{i_{3}} j_{2}+i_{2} i_{3} n+(-1)^{i_{2}+i_{3}} j_{1} \\
J_{R} & =j_{3}+(-1)^{i_{3}} j_{1}+(-1)^{i_{1}+i_{3}}\left((-1)^{i_{1}+1} j_{1}+i_{1} n+(-1)^{i_{1}}\left(j_{2}+(-1)^{i_{2}} j_{1}\right)+\left(i_{1}+i_{2}\right) i_{1} n\right) \\
& +i_{2}\left(i_{1}+i_{3}\right) n
\end{aligned}
$$

That $I_{L}=I_{R}$ is obvious, and for the difference:

$$
\begin{aligned}
& J_{L}-J_{R}=(-1)^{i_{3}} j_{2}+i_{2} i_{3} n+(-1)^{i_{2}+i_{3}} j_{1}-(-1)^{i_{3}} j_{1}- \\
& \quad(-1)^{i_{1}+i_{3}}\left((-1)^{i_{1}+1} j_{1}+i_{1} n+(-1)^{i_{1}}\left(j_{2}+(-1)^{i_{2}} j_{1}\right)+\left(i_{1}+i_{2}\right) i_{1} n\right)
\end{aligned}
$$

it's basically a case by case analysis to show that this is always 0

$Q(a, D(b, c))=D\left(D\left(Q(a, b), D^{-1}(a)\right), Q(a, c)\right)$

Similarly, $Q(a, D(b, c))=t^{L_{L} X^{J_{L}}}$ and
$D\left(D\left(Q(a, b), D^{-1}(a)\right), Q(a, c)\right)=t^{l_{R} X^{J_{R}}}$ where

$$
\begin{aligned}
I_{L} & =i_{1}+i_{2}+i_{3} \\
I_{R} & =i_{1}+i_{2}+i_{3} \\
J_{L} & =j_{3}+(-1)^{i_{3}} j_{2}+(-1)^{i_{2}+i_{3}} j_{1}+i_{1}\left(i_{2}+i_{3}\right) n \\
J_{R} & =j_{3}+(-1)^{i_{3}} j_{1}+i_{1} i_{3} n \\
& +(-1)^{i_{1}+i_{3}}\left((-1)^{i_{1}+1} j_{1}+(-1)^{i_{1}}\left(j_{2}+(-1)^{i_{2}} j_{1}+i_{1} i_{2} n\right)\right)
\end{aligned}
$$

and here too, we can show that $I_{L}=I_{R}$ and $J_{L}=J_{R}$.

For the groups

$$
\begin{aligned}
& G_{1}=\left\langle t, x, z \mid t^{2}, x^{p^{n}}, z^{4}, t x t^{-1} x,[t, z],[x, z]\right\rangle \\
& G_{2}=\left\langle t, x, z \mid t^{2}, x^{p^{n}}, z^{4}, t x t^{-1} x, t z t^{-1} z, z x z^{-1} x\right\rangle
\end{aligned}
$$

we can also demonstrate that the (bi-)skew brace relations hold.

In both cases, each group consists of expressions of the form

$$
X=\left\{t^{i} x^{j} z^{k} \mid i \in \mathbb{Z}_{2} ; j \in \mathbb{Z}_{p^{n}} ; k \in \mathbb{Z}_{4}\right\}
$$

and so any potential bi-skew brace structure is defined on this single set X.
We now need to determine the multiplication formulae, which arise from the presentations above.

In G_{1} the following holds:

$$
\left(t^{i_{1}} x^{j_{1}} z^{k_{1}}\right)\left(t^{i_{2}} x^{j_{2}} z^{k_{2}}\right)=t^{i_{1}+i_{2}} x^{j_{2}+(-1)^{i_{1}} j_{1}} z^{k_{1}+k_{2}}
$$

which is quite similar to that for $D_{p^{n}}$ obviously since $\langle z\rangle$ is central in G_{1}. We easily deduce from this that

$$
\left(t^{i} x^{j} z^{k}\right)^{-1}=t^{i} x^{(-1)^{i+1} j_{z}}{ }^{-k}
$$

which we shall need later.

In G_{2} the following holds:

$$
\begin{aligned}
\left(t^{i_{1}} x^{j_{1}} z^{k_{1}}\right)\left(t^{i_{2}} x^{j_{2}} z^{k_{2}}\right) & =t^{i_{1}} x^{j_{1}} t^{i_{2}} z^{(-1)^{i_{2}} k_{2}} x^{j_{2}} z^{k_{2}} \\
& =t^{i_{1}+i_{2}} x^{(-1)^{i_{2} j_{1}} z^{(-1)^{i_{2}} k_{1}} x^{j_{1}} z^{k_{2}}} \\
& =t^{i_{1}+i_{2}} x^{(-1)^{i_{2} j_{1}}} x^{(-1)^{(-1) 2} k_{1}{k_{1}}_{2}} z^{(-1)^{i_{2}} k_{1}} z^{k_{2}} \\
& =t^{i_{1}+i_{2}} x^{(-1)^{i_{2} j_{1}+(-1)^{(-1)^{2} k_{1} j_{2}}} z^{(-1)^{i_{2}} k_{1}} z^{k_{2}}} \\
& \downarrow \operatorname{since} k_{1}=-k_{1}(\bmod 2) \\
& =t^{i_{1}+i_{2}} x^{(-1)^{i_{2} j_{1}+(-1)^{k_{1} j_{2}}} z^{(-1)^{i_{2}} k_{1}+k_{2}}}
\end{aligned}
$$

which is more complicated due to z being non-central in G_{2}.

And we also deduce that

$$
\left(t^{i} x^{j} z^{k}\right)^{-1}=t^{i} x^{(-1)^{i+k+1} j_{1}} z^{(-1)^{i+1} k}
$$

which is the inverse for G_{2}.
So for the set X, if we define (for some notational consistency with the above examples) $D=(X, \circ) \cong G_{1}$ and $Q=(X, \star) \cong G_{2}$ then the skew brace relation

$$
a \circ(b \star c)=(a \circ b) \star a^{-1} \star(a \circ c)
$$

again translates to the 'function' formulation

$$
D(a, Q(b, c))=Q\left(Q\left(D(a, b), Q^{-1}(a)\right), D(a, c)\right)
$$

as we used above.

And in reverse, if we let $D=(X, \star) \cong G_{1}$ and $Q=(X, \circ) \cong G_{2}$ which we express in function form as

$$
Q(a, D(b, c))=D\left(D\left(Q(a, b), D^{-1}(a)\right), Q(a, c)\right)
$$

and we wish to verify both to confirm that we have a bi-skew brace structure on X arising from these two groups.

$D(a, Q(b, c))=Q\left(Q\left(D(a, b), Q^{-1}(a)\right), D(a, c)\right)$

We explore the first of the two brace relations.
Let $a=t^{i_{1}} x^{j_{1}} z^{k_{1}}, b=t^{i_{2}} x^{j_{2}} z^{k_{2}}, c=t^{i_{3}} x^{j_{3}} z^{k_{3}}$ then

$$
\begin{aligned}
D(a, Q(b, c)) & =t^{I_{L} x^{J_{L}} z^{K_{L}}} \\
Q\left(Q\left(D(a, b), Q^{-1}(a)\right), D(a, c)\right) & =t^{I_{R}} x^{J_{R}} z^{K_{R}}
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{L}=i_{1}+i_{2}+i_{3} \\
& I_{R}=i_{1}+i_{2}+i_{3} \\
& \downarrow \\
& I_{L}-I_{R}=0 \\
& J_{L}-J_{R}=(-1)^{i_{3}} j_{2}+(-1)^{i_{2}+i_{3}} j_{1}-(-1)^{2 i_{1}+i_{3}} j_{2}-(-1)^{2 i_{1}+i_{3}+i_{2}} j_{1}+ \\
&(-1)^{i_{1}+i_{3}+2 k_{1}+k_{2}} j_{1}-(-1)^{k_{2}+i_{3}} j_{1} \\
&=(-1)^{i_{3}} j_{2}+(-1)^{i_{2}+i_{3}} j_{1}-(-1)^{i_{3}} j_{2}-(-1)^{i_{3}+i_{2}} j_{1}+ \\
&(-1)^{i_{3}+k_{2}} j_{1}-(-1)^{k_{2}+i_{3}} j_{1} \\
&=(-1)^{i_{3}+k_{2}} j_{1}-(-1)^{k_{2}+i_{3}} j_{1} \\
&=0 \\
& K_{L}-K_{R}=(-1)^{i_{3}} k_{2}-(-1)^{i_{3}} k_{2} \\
&=0
\end{aligned}
$$

so indeed $a \circ(b \star c)=(a \circ b) \star a^{-1} \star(a \circ c)$.

For the reversed case, we consider, for a, b and c as above, the expressions:

$$
\begin{aligned}
Q(a, D(b, c)) & =t^{I_{L} x^{J_{L}} z^{K_{L}}} \\
D\left(D\left(Q(a, b), D^{-1}(a)\right), Q(a, c)\right) & =t^{I_{R}} X^{J_{R}} z^{K_{R}}
\end{aligned}
$$

to see if $I_{L}=I_{R}, J_{L}=J_{R}$, and $K_{L}=K_{R}$ but these verifications aren't too difficult.

We have

$$
\begin{aligned}
I_{L} & =i_{1}+i_{2}+i_{3} \\
I_{R} & =i_{1}+i_{2}+i_{3} \\
& \downarrow \\
I_{L}-I_{R} & =0 \\
J_{L}-J_{R} & =(-1)^{i_{2}+i_{3}} j_{1}+(-1)^{k_{1}+i_{3}} j_{2}-(-1)^{i_{3}} j_{1}+ \\
& (-1)^{2 i_{1}+i_{3}} j_{1}-(-1)^{2 i_{1}+i_{3}+i_{2}} j_{1}-(-1)^{2 i_{1}+i_{3}+k_{1}} j_{2} \\
& =(-1)^{i_{2}+i_{3}} j_{1}+(-1)^{k_{1}+i_{3}} j_{2}-(-1)^{i_{3}} j_{1}+ \\
& (-1)^{i_{3}} j_{1}-(-1)^{i_{3}+i_{2}} j_{1}-(-1)^{i_{3}+k_{1}} j_{2} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
K_{L}-K_{R} & =(-1)^{i_{2}+i_{3}} k_{1}-(-1)^{i_{2}} k_{1}+k_{1}-(-1)^{i_{3}} k_{1} \\
& =(-1)^{i_{2}+i_{3}} k_{1}+(-1)^{i_{2}+1} k_{1}+k_{1}+(-1)^{i_{3}+1} k_{1} \\
& = \begin{cases}(-1)^{i_{3}} k_{1}-k_{1}+k_{1}+(-1)^{i_{3}+1} k_{1} & i_{2}=0 \\
(-1)^{1+i_{3}} k_{1}+k_{1}+k_{1}+(-1)^{i_{3}+1} k_{1} & i_{2}=1\end{cases} \\
& = \begin{cases}k_{1}-k_{1}+k_{1}-k_{1} & i_{2}=0, i_{3}=0 \\
k_{1}+k_{1}+k_{1}+k_{1} & i_{2}=1, i_{3}=1\end{cases} \\
& \left.=0 \text { (recall that } k_{1} \in \mathbb{Z}_{4}\right)
\end{aligned}
$$

so indeed $a \star(b \circ c)=(a \star b) \circ a^{-1} \circ(a \star c)$.

N N．P．Byott．
Uniqueness of Hopf Galois structure of separable field extensions．
Comm．Algebra，24：3217－3228， 1996.
固 L．Childs．
On the Hopf－Galois theory for separable field extensions．
Comm．Algebra，17（4）：809－825， 1989.
围 L．Guarnieri and L．Vendramin．
Skew braces and the yang baxter equation．
Math．Comp．，86：2519－2534， 2017.
图 T．Kohl．
Classification of the Hopf Galois structures on prime power radical extensions．
J．Algebra，207：525－546， 1998.
睩 D．König．
Über graphen und ihre anwendung auf determinantentheorie und mengenlehre．
Math．Ann．，77：453－465， 1916.

