Isomorphic Holomorphs and Bi-Skew Braces

Timothy Kohl

Boston University

May 26, 2021

Suppose L/K is Galois with group G = Gal(L/K) and that L/K is Hopf-Galois, corresponding to a regular subgroup $N \le B = Perm(G)$ where $\lambda(G) \le Norm_B(N)$.

If $Norm_B(N)$ has a regular subgroup N' for which $Norm_B(N') = Norm_B(N)$ then $\lambda(G) \leq Norm_B(N')$ of course, and therefore N' gives rise to a Hopf-Galois structure as well.

The prototype example of this is the case when $N' = N^{opp} = Cent_B(N)$.

And somewhat more generally, this arises naturally in the study of the multiple holomorph,

$$NHol(N) = Norm_B(Norm_B(N))$$

whose size (and action on N by conjugation) determines the set $\mathcal{H}(N)$, of those regular, normal subgroups of $Norm_B(N) \cong Hol(N)$ that are isomorphic to N, where $Norm_B(N) = Norm_B(N')$

More generally however, the condition that $Norm_B(N) = Norm_B(N')$, for N' another regular subgroup of $Norm_B(N)$, does not automatically imply that $N \cong N'$.

Given that $Norm_B(N) \cong Hol(N) \cong N \rtimes Aut(N)$ it stands to reason that the existence of such an N' would imply (by size considerations at the very least) that |Aut(N)| = |Aut(N')|, or more possibly that $Aut(N) \cong Aut(N')$.

To see the connection with bi-skew braces, we shall proceed with a bit of formality.

For X a finite set where |X| = n, we consider the totality of all isomorphism classes of groups of order n embedded as regular subgroups of B = Perm(X), namely $\{G_1, \ldots, G_m\}$.

For each such $G \leq B$ one may form the normalizer $Hol(G) = Norm_B(G)$ which is canonically isomorphic to the classic holomorph of G, namely $G \rtimes Aut(G)$.

Note, we are not focusing on regularity defined in terms of the left regular representation of a single group G embedded as $\lambda(G)$ in Perm(G).

The other principal observation is this:

For the regular subgroups $\{G_1, \ldots, G_m\}$ contained in B = Perm(X), chosen from the distinct isomorphism classes, if $N \leq Perm(X)$ is any regular subgroup, then obviously $N \cong G_i$ for exactly one G_i , and therefore $N = \beta G_i \beta^{-1}$ for some $\beta \in B$.

Moreover, $N = \tilde{\beta} G_i \tilde{\beta}^{-1}$ if any only if $\tilde{\beta} \in \beta Hol(G_i)$.

For any paring (G_i, G_i) we can define

 $S(G_i, [G_i]) = \{M \le Hol(G_i) \mid M \text{ is regular and } M \cong G_i\}$ $R(G_i, [G_i]) = \{N \le B \mid N \text{ is regular and } G_i \le Hol(N) \text{ and } N \cong G_i\}$

which are two *complementary* sets of regular subgroups of B, where those in S are contained in a fixed subgroup of B, while the other consists of subgroups of B which may be *widely dispersed* within B.

The class $R(G_i, [G_j])$ is of interest as it corresponds exactly to the K-Hopf algebras H which act on a Galois extension L/K where $Gal(L/K) \cong G_i$ and $H = (L[N])^{Gal(L/K)}$ where $N \cong G_j$.

In particular the fundamental relationship between $S(G_j, [G_i])$ and $R(G_i, [G_j])$ has been explored in [2] by Childs, in [1] by Byott, and by the author in [4].

We present the following recapitulation of all these ideas by showing that both sets are enumerated by the union of sets of cosets of $Hol(G_i)$ and of $Hol(G_i)$ which we shall refer to as the reflection principle.

Proposition

If B = Perm(X) for |X| = n and $\{G_1, \ldots, G_m\}$ is a set of regular subgroups of B, one from each isomorphism class of groups of order n, then for any G_i and G_j one has

 $|S(G_j, [G_i])| \cdot |Hol(G_i)| = |R(G_i, [G_j])| \cdot |Hol(G_j)|.$

Proof.

(Sketch) We can parameterize the elements of $S(G_j, [G_i])$ by a set of distinct cosets

```
\beta_1 Hol(G_i), \ldots, \beta_s Hol(G_i)
```

and $R(G_i, [G_j])$ by distinct cosets

```
\alpha_1 Hol(G_j), \ldots, \alpha_r Hol(G_j)
```

The bijection we seek is as follows:

$$\Phi: \bigcup_{k=1}^{s} \beta_k \operatorname{Hol}(G_i) \to \bigcup_{l=1}^{r} \alpha_l \operatorname{Hol}(G_j)$$

defined by $\Phi(\beta_k h) = (\beta_k h)^{-1}$.

The basic principle is that

$$eta G_i eta^{-1} \leq Hol(G_j)$$
 \updownarrow
 $G_i \leq eta^{-1} Hol(G_j) eta = Hol(eta^{-1} G_j eta)$

i.e.

$$M = \beta G_i \beta^{-1} \in S(G_j, [G_i]) \leftrightarrow N = \beta^{-1} G_j \beta \in R(G_i, [G_j])$$

Since $|Hol(G)| = |G| \cdot |Aut(G)|$ (and all G_k have the same size obviously) we have the following.

Corollary

For G_i and G_j as above one has

 $|S(G_j, [G_i])| \cdot |Aut(G_i)| = |R(G_i, [G_j])| \cdot |Aut(G_j)|.$

And if $|Aut(G_j)| = |Aut(G_i)|$ then we have the following 'cancellation' formula relating the sizes of the sets S and R.

Corollary

If $|Aut(G_j)| = |Aut(G_i)|$ then

 $|S(G_{j}, [G_{i}])| = |R(G_{i}, [G_{j}])|$

Regarding the elements which conjugate G_i to an element of $S(G_j, [G_i])$ or G_j to an element of $R(G_i, [G_j])$ we have the following, which is, more or less, a variant of Hall's marriage theorem.

(Actually it stems from an earlier result due to König [5] on bijections between sets partitioned into equal numbers of subsets.)

Lemma

If $|Aut(G_j)| = |Aut(G_j)|$ then it is possible to choose a set of coset representatives $\pi(S) = \{\beta_1, \ldots, \beta_s\}$ for which each $M \in S(G_j, [G_i])$ is of the from $\beta G_i \beta^{-1}$ for exactly one $\beta \in \pi(S)$, so that $\Phi(\pi(S)) = \pi(R) = \{\beta_1^{-1}, \ldots, \beta_s^{-1}\}$ parameterizes each element of $R(G_i, [G_j])$, namely that each $N \in R(G_i, [G_j])$ is $\beta^{-1}G_j\beta$ for each $\beta \in \pi(S)$.

We'll see the implications of this a bit later.

We will cite a number of results from Guarnieri and Vendramin [3], but will follow the notational conventions set forth in the first section, to frame things within an ambient symmetric group B = Perm(X) for a set X.

In [3], Guarnieri and Vendramin define a skew left brace to be a group (A, \star) (termed the 'additive group') with an additional group structure (A, \circ) (termed the 'multiplicative' structure) satisfying the skew-brace relation.

Note, they use ' \cdot ' instead of $\star,$ but l'm using \star as it's become somewhat standard notation.

Definition

A skew left brace is a finite set X together with two operations \star and \circ such that (X, \star) and (X, \circ) are both groups, where the two group operations satisfy the 'brace relation'

$$a \circ (b \star c) = (a \circ b) \star a^{-1} \star (a \circ c)$$

where a^{-1} is the inverse of *a* in (X, \star) .

To keep with the point of view of \star and \circ having 'equal footing' we note an important equivalence.

For a set X with two group structures (X, \star) and (X, \circ) one may define $\Lambda : X \to B = Perm(X)$ by $\Lambda(a)(b) = a^{-1} \star (a \circ b)$.

This is somewhat notationally different than the definition given in [3] where they define $\lambda_a(b) = a^{-1} \star (a \circ b)$ which is our $\Lambda(a)(b)$.

Our motivation is to distinguish Λ from the left regular representations $\lambda_{\star}: X \to X$ and $\lambda_{\circ}: X \to X$ induced by the \star and \circ operations.

We have then the following.

Proposition

[3, Prop. 1.9,Cor. 1.10] The triple (X, \star, \circ) being a skew left brace is equivalent to

$$\Lambda(a \circ b)(c) = \Lambda(a)(\Lambda(b)(c))$$

and

$$\Lambda(a)(b \star c) = \Lambda(a)(b) \star \Lambda(a)(c)$$

for all $a, b, c \in X$.

The triple (X, \star, \circ) being a skew brace therefore implies that Λ is a group homomorphism and that $\Lambda : ((X, \circ)) \to Aut((X, \star))$.

The connection between skew left braces and holomorphs begins with the above mapping which has image in

$$Aut((X,\star)) \leq Norm_B(\lambda_\star(X)) = \lambda_\star(X)Aut((X,\star))$$

where $Norm_B(\lambda_{\star}(X)) = Hol((X, \star)).$

For (X, \star, \circ) , the map Λ yields an embedding

$$(X,\circ) \ni a \mapsto (\lambda_{\star}(a)\Lambda(a))$$

of (X, \circ) as a regular subgroup of $Hol((X, \star))$, which, in a fairly obvious way, recovers (X, \circ) since

$$\lambda_{\star}(a)\Lambda(a)(b) = a \star a^{-1} \star (a \circ b)$$

= $a \circ b$

and similarly,

.

$$M = \{(\lambda_\star(a)f(a)) \in Hol((X,\star)) \mid a \in X\}$$

is a regular subgroup of $Hol((X, \star))$ if and only if

$$\lambda_\star(a)f(a)\mapsto\lambda_\star(a)$$

is bijective, and if so, then one yields a group (X, \circ) given by

$$(a \circ b) = \lambda_{\star}(a)f(a)(b) = a \star f(b)$$

This is exactly the content of [3, Prop 4.2].

So with the earlier notation in mind, if (X, \star, \circ) is a skew left brace, then for $G_j = \lambda_{\star}(X)$ and $G_i \cong (X, \circ)$ we have $M = (X, \circ) \in S(G_j, [G_i])$.

That is, the skew left brace structures (X, \star, \circ) where $(X, \star) \cong G_j$ and $(X, \circ) \cong G_i$ are in direct correspondence with $S(G_j, [G_i])$.

But now, as $M \in S(G_j, [G_i])$ then $M = \beta G_i \beta^{-1} \leq Hol(G_j)$ which means, symmetrically, that

 $G_i \leq Hol(\beta^{-1}G_j\beta)$

namely that $N = \beta^{-1}G_j\beta \in R(G_i, [G_j]).$

The question of isomorphic skew left braces is also readily formulated within $S(G_j, [G_i])$ and $R(G_i, [G_j])$.

In [3] a pair of skew left braces (A, \cdot, \circ) and (A, \cdot, \times) are isomorphic if there is an automorphism $\phi \in Aut(A, \cdot)$ so that $\phi(a \circ b) = \phi(a) \times \phi(b)$.

And in terms of the regular subgroups of Hol(A) one has the following, which we again formulate using the view of (X, \star) and (X, \circ) as regular subgroups of Perm(X).

Proposition

[3, Prop. 4.3] Isomorphic skew brace structures (X, \star, \circ) and (X, \star, \times) correspond to conjugacy classes in $S(G_j, [G_i])$ under the action of $Aut(G_j)$, where $G_j = \lambda_{\star}(X)$ and $(X, \circ) \cong (X, \times) \cong G_i$.

We can use the reflection principle to further explore this action of $Aut(G_j)$ on $S(G_j, [G_i])$.

If $M_1 = \beta G_i \beta^{-1}$ and for $\mu \in Aut(G_j)$ we define $M_2 = \mu \beta G_i \beta^{-1} \mu^{-1}$ then $M_1 = \beta G_i \beta^{-1} \leq Hol(G_j)$ $M_2 = \mu \beta G_i \beta^{-1} \mu^{-1} \leq Hol(G_j)$

and under the passage from S to R, via Φ by passing from β to β^{-1} and $\mu\beta$ to $\beta^{-1}\mu^{-1}$ we have

$$G_i \leq Hol(\beta^{-1}G_j\beta)$$

$$G_i \leq Hol(\beta^{-1}\mu^{-1}G_j\mu\beta) = Hol(\beta^{-1}G_j\beta)$$

namely that $M_1, M_2 \in S(G_j, [G_i])$ correspond to a single

$$N = \beta^{-1} \mu^{-1} G_j \mu \beta = \beta^{-1} G_j \beta$$

in $R(G_i, [G_j])$.

The upshot of this is that elements of $S(G_j, [G_i])$ in the same conjugacy class under the action of $Aut(G_j)$ correspond to the same element of $R(G_i, [G_j])$.

In a symmetric fashion, if $G_i \leq Hol(\alpha G_j \alpha^{-1})$ then for $\nu \in Aut(G_i)$ we have

$$G_{i} \leq Hol(\alpha G_{j}\alpha^{-1})$$

$$\downarrow$$

$$G_{i} = \nu G_{i}\nu^{-1} \leq Hol(\nu \alpha G_{j}\alpha^{-1}\nu^{-1})$$

which means that $Aut(G_i)$ acts on $R(G_i, [G_j])$.

And therefore elements of $R(G_i, [G_j])$ in the same conjugacy class under the action of $Aut(G_i)$ correspond to the same element of $S(G_i, [G_i])$. We therefore have the following equivalence.

Theorem

If $S(G_j, [G_i])/Aut(G_j)$ is the set of equivalence classes of $S(G_j, [G_i])$ under the action of $Aut(G_j)$ and $R(G_i, [G_j])/Aut(G_i)$ is the set of equivalence classes of the action of $Aut(G_i)$ on $R(G_i, [G_j])$ then

 $|S(G_j, [G_i])/Aut(G_j)| = |R(G_i, [G_j])/Aut(G_i)|$

via the correspondence given above.

Either of these therefore characterizes the equivalence classes of skew left braces.

Not only do we have the correspondence between the equivalence classes $S(G_j, [G_i])/Aut(G_j)$ and $R(G_i, [G_j])/Aut(G_i)$, there is a correspondence at the level of each orbit.

Proposition

If $M = \beta G_i \beta^{-1} \in S(G_j, [G_i])$ and $N = \beta^{-1}G_j \beta \in R(G_i, [G_j])$ then

 $|Orb_{Aut(G_j)}(M)| \cdot |Aut(G_i)| = |Orb_{Aut(G_i)}(N)| \cdot |Aut(G_j)|.$

So we get a kind of 'miniature' version of the reflection principle

$$|S(G_j, [G_i])| \cdot |Hol(G_i)| = |R(G_i, [G_j])| \cdot |Hol(G_j)|$$

$$\downarrow$$

$$|S(G_j, [G_i])| \cdot |Aut(G_i)| = |R(G_i, [G_j])| \cdot |Aut(G_j)|$$

These statements about the sizes of the orbits under the actions correspond (basically) to the sizes of the double cosets

$$Aut(G_j)eta Aut(G_i) \stackrel{\Phi}{
ightarrow} Aut(G_i)eta^{-1}Aut(G_j)$$

although we could phrase this in terms of holomorphs too (with the reflection principle in mind)

$$Hol(G_j)\beta Hol(G_i) \stackrel{\Phi}{\rightarrow} Hol(G_i)\beta^{-1}Hol(G_j)$$

which would correspond to the statement

 $|Orb_{Hol(G_j)}(M)| \cdot |Hol(G_i)| = |Orb_{Hol(G_i)}(N)| \cdot |Hol(G_j)|.$

If $|Aut(G_j)| = |Aut(G_i)|$ then we can say more about the orbits, the first observation being that

$$|Orb_{Aut(G_j)}(M)| = |Orb_{Aut(G_i)}(N)|$$

and the passage from $\beta \in \pi(S)$ to $\Phi(\beta) = \beta^{-1} \in \pi(R)$ extends in a natural way to a bijection $\hat{\Phi} : S(G_j, [G_i]) \to R(G_i, [G_j])$ where now $\hat{\Phi}(Orb_{Aut(G_j)}(M)) = Orb_{Aut(G_i)}(N)$.

Now, a bi-skew brace is a set X together with two operations \star and \circ such that

$$a \circ (b \star c) = (a \circ b) \star a^{-1} \star (a \circ c)$$
$$a \star (b \circ c) = (a \star b) \circ \overline{a} \circ (a \star c)$$

simultaneously.

So if we start with the skew left brace (X, \star, \circ) which yields a regular subgroup $M \leq Hol((X, \star))$, namely that $M = (X, \circ)$, if we reverse the roles of \star and \circ we have that $\lambda_{\star}(X)$ becomes a regular subgroup of $Hol((X, \circ)) = Hol(M)$.

As such, if $(X, \star) \cong G_i$ and $(X, \circ) \cong G_j$ then if a skew left brace (X, \star, \circ) is such that (X, \circ, \star) is also a skew left brace, we have the following.

Theorem

For (X, \star, \circ) a bi-skew brace as above with $M \leq Hol((X, \star))$, where $M \cong (X, \circ) \cong G_i$ and $(X, \star) \cong G_j$ we have that

 $M \in S(G_j, [G_i]) \cap R(G_j, [G_i])$

and if $M = \beta G_i \beta^{-1}$ then for $N = \beta^{-1} G_j \beta$ the reflection principle implies that $N \in S(G_i, [G_j]) \cap R(G_i, [G_j])$.

The existence of a bi-skew brace therefore hinges on

$$S(G_j, [G_i]) \cap R(G_j, [G_i])$$

being *non-empty*, and for this we consider the situation where $Hol(G_j) \cong Hol(G_i)$.

In this case, we can assume G_i and G_j are chosen so that $Hol(G_i) = Hol(G_j)$ as subgroups of B = Perm(X) and an element in $S(G_j, [G_i]) \cap R(G_j, [G_i])$ would be a group N, that is isomorphic to G_i , contained in $Hol(G_j)$, and normalized by G_j .

But if $Hol(G_i) = Hol(G_j)$ and since $G_i \triangleleft Hol(G_i)$ obviously, then $G_i \triangleleft Hol(G_j)$ which guarantees at least one such group in this intersection.

i.e. G_i itself lies in $S(G_j, [G_i]) \cap R(G_j, [G_i])$

Moreover, every element of $\mathcal{H}(G_i)$ lies in $S(G_j, [G_i]) \cap R(G_j, [G_i])$ too.

For groups D and Q where |D| = |Q| one may have that $Aut(D) \cong Aut(Q)$ and $Hol(D) \cong Hol(Q)$.

The classic example of this is the case of dihedral groups D_{2n} and quaternionic groups Q_n of order 4n where $Hol(D_{2n}) \cong Hol(Q_n)$.

This implies, therefore, that Hol(D) contains a regular normal subgroup isomorphic to Q and vice versa.

In general, if $N \triangleleft Hol(G_j)$ is regular, where $N \cong G_i$ then obviously $Hol(G_j) \leq Norm_B(N) \cong G_i \rtimes Aut(G_i)$.

But since $Hol(G_i) = G_i A_z$ (for any $z \in X$) where $A_z \cong Aut(G_i)$ then $G_i \cap A_z = \{1\}$ and similarly $N \cap A_z = \{1\}$ and so

$$NA_z \leq Hol(G_j) \leq Norm_B(N) \cong Hol(G_i)$$

and so if $|Aut(G_i)| = |Aut(G_j)|$ then $|NA_z| = |Hol(G_j)| = |Hol(G_i)|$ which implies that $A_z \cong Aut(G_j) \cong Aut(G_i)$.

As such, it is necessary that the respective automorphism groups *must* be isomorphic, but it is not sufficient.

For example

$$Aut(Q_3) \cong Aut(D_6) \cong Aut(C_6 \times C_2) \cong D_6$$

but

$$Hol(Q_3) \cong Hol(D_6) \cong (C_3 \times C_3) \rtimes (C_2 \times D_4)$$

whereas $Hol(C_6 \times C_2) \cong D_3 \times S_4$.

Dihedral and Quaternionic Groups

We have the presentation for the Quaternion group of order 4n for $n \ge 3$:

$$Q_n = \langle x, t | x^{2n} = 1, t^2 = x^n, txt^{-1} = x^{-1} \rangle$$

where a typical element is of the form $t^i x^j$ for $i \in \mathbb{Z}_2$ and $j \in \mathbb{Z}_{2n}$ where

$$\begin{aligned} x^{j_1} x^{j_2} &= x^{j_1+j_2} \\ x^{j_1} t x^{j_2} &= t x^{j_2-j_1} \\ t x^{j_1} x^{j_2} &= t x^{j_1+j_2} \\ t x^{j_1} t x^{j_2} &= x^{j_2-j_1+n} \\ (t^i x^j)^{-1} &= t^i x^{(-1)^{(i+1)}j+in} \\ t^{i_1} x^{j_1} t^{i_1} x^{j_2} &= t^{i_1+i_2} x^{j_2+(-1)^{i_2}j_1+(i_1i_2)n} \end{aligned}$$

The presentation of the Dihedral group D_{2n} of order 4n for $n \ge 3$ is

$$D_{2n} = \langle x, t | x^{2n} = 1, t^2 = 1, t^{-1}xt = x^{-1} \rangle$$

where a typical element is of the form $t^i x^j$ for $i \in \mathbb{Z}_2$ and $j \in \mathbb{Z}_{2n}$ where

$$\begin{aligned} x^{j_1} x^{j_2} &= x^{j_1+j_2} \\ x^{j_1} t x^{j_2} &= t x^{j_2-j_1} \\ t x^{j_1} x^{j_2} &= t x^{j_1+j_2} \\ t x^{j_1} t x^{j_2} &= x^{j_2-j_1} \\ (t^i x^j)^{-1} &= t^i x^{(-1)^{(i+1)}j} \\ t^{i_1} x^{j_1} t^{i_1} x^{j_2} &= t^{i_1+i_2} x^{j_2+(-1)^{i_2}j_1} \end{aligned}$$

Beyond these two examples, there are others.

Consider the following two groups of order $8p^n$ for p an odd prime.

$$G_{1} = \langle t, x, z \mid t^{2}, x^{p^{n}}, z^{4}, txt^{-1}x, [t, z], [x, z] \rangle$$

$$G_{2} = \langle t, x, z \mid t^{2}, x^{p^{n}}, z^{4}, txt^{-1}x, tzt^{-1}z, zxz^{-1}x \rangle$$

These are somewhat obscure looking, except that they are reasonably familiar groups.

Specifically $G_1 \cong D_{p^n} \times C_4$ and $G_2 \cong C_{p^n} \rtimes D_4$ where in G_1 the subgroup $\langle t, x \rangle \cong D_{p^n}$ with $\langle z \rangle$ being central, and in G_2 , the subgroup $\langle t, z \rangle \cong D_4$ and $\langle x \rangle \cong C_{p^n}$ where t inverts x and z, and z inverts x.

As we saw above, the groups D_{2n} and Q_n can be given as different group operations on the common set of symbols $X = \{t^a x^b \mid a \in \mathbb{Z}_2; b \in \mathbb{Z}_{2n}\}$.

As such, both $\rho(D_{2n})$ and $\rho(Q_n)$ are permutations on this set. Moreover, the isomorphism group of both can be viewed as permutations of this set, namely

$$Aut(D_{2n}) = Aut(Q_n) = \{\phi_{i,j} \mid i \in \mathbb{Z}_{2n}, j \in U_{2n}\}$$

where $\phi_{i,j}(t^a x^b) = t^a x^{ia+jb}$

where, $Aut(D_{2n}) = Aut(Q_n) \cong Hol(C_{2n})$.

Moreover, if we denote by ρ_d the right regular action of D_{2n} (as permutations of X), and ρ_q the right regular action of Q_n then we have the following *equalities*

$$\rho_q(x^b)\phi_{i,j} = \rho_d(x^b)\phi_{i,j}$$
$$\rho_q(tx^b)\phi_{i,j} = \rho_d(tx^{b+n})\phi_{i+n,j}$$

yielding the fact that, as subgroups of $Perm(\{t^ax^b\})$ we have $Hol(D_{2n}) = Hol(Q_n)$.

In a similar way, the groups G_1 and G_2 are 'built' on the same underlying set $X = \{t^a x^b z^c\}$ and the automorphism group of G_1 and G_2 are isomorphic, but here too can be viewed as identical when viewed as permutations of this set.

This common automorphism group is $A = \langle \phi_{(1,1)}, \phi_{(0,w)}, \psi, \tau \rangle$ where $\langle w \rangle = U_{p^n}$ where

$\phi_{(1,1)}(t) = tx$	$\phi_{(0,w)}(t) = t$	$\psi(t) = t$	$\tau(t) = tz^2$
$\phi_{(1,1)}(x) = x$	$\phi_{(0,w)}(x) = x^w$	$\psi(\mathbf{x}) = \mathbf{x}$	$\tau(x) = x$
$\phi_{(1,1)}(z) = z$	$\phi_{(0,w)}(z)=z$	$\psi(z) = z^{-1}$	$\tau(z) = z$

where $|\phi_{(1,1)}| = p^n$, $|\phi_{(0,w)}| = \phi(p^n)$, $|\psi| = 2$, and $|\tau| = 2$.

So now, if we denote by ρ_1 and ρ_2 the corresponding right regular representations then

$$Hol(G_1) = \langle \rho_1(t), \rho_1(x), \rho_1(z), \phi_{(1,1)}, \phi_{(0,w)}, \psi, \tau \rangle$$
$$Hol(G_2) = \langle \rho_2(t), \rho_2(x), \rho_2(z), \phi_{(1,1)}, \phi_{(0,w)}, \psi, \tau \rangle$$

where one can show that the bridge between these is what ' $\rho_1(z)$ ' is in $Hol(G_2)$, (or equivalently what $\rho_2(z)$ equals in $Hol(G_1)$)

$$egin{aligned} &
ho_1(z)=
ho_2(t)
ho_2(z)\psi au\in {\it Hol}({\it G}_2)\ &
ho_2(z)=
ho_1(t)
ho_1(z)\psi au\in {\it Hol}({\it G}_1) \end{aligned}$$

so that $Hol(G_1)$ may be regarded as equal to $Hol(G_2)$.

Beyond just pairs with isomorphic holomorphs

We've just seen how having $Hol(G_i) \cong Hol(G_j)$ implies the existence of a bi-skew brace, but are there larger collections of groups (of the same order) with isomorphic/equal holomorphs?

Yes, although these results are (at the moment) computational:

In degree 48 there are 4 groups with isomorphic holomorphs:

 $(C_3 \times D_4) \rtimes C_2$ $(C_3 \rtimes Q_2) \rtimes C_2$ $(C_3 \times Q_2) \rtimes C_2$ $C_3 \rtimes Q_4$

where Q_2 is the usual 8 element quaternion group, Q_4 is the order 16 quaternion group, and D_4 is the fourth dihedral group.

Going still further, in degree 96 we have 8 groups with isomorphic holomorphs:

$$C_{3} \rtimes (C_{4} \rtimes Q_{2})$$

$$C_{3} \rtimes ((C_{2} \times C_{2}).(C_{2} \times C_{2} \times C_{2}))$$

$$(C_{4} \rtimes C_{4}) \times D_{3}$$

$$C_{3} \rtimes ((C_{4} \times C_{4}) \rtimes C_{2})$$

$$C_{3} \rtimes ((C_{4} \times C_{2} \times C_{2}) \rtimes C_{2})$$

$$C_{3} \rtimes ((C_{2} \times Q_{2}) \rtimes C_{2})$$

$$C_{3} \rtimes ((C_{4} \times C_{2} \times C_{2}) \rtimes C_{2})$$

$$C_{3} \rtimes ((C_{2} \times Q_{2}) \rtimes C_{2})$$

and these, like the degree 48 cases in the previous slide, and the order $8p^n$ groups G_1 and G_2 , have certain structural similarities.

Even more recently discovered (i.e. yesterday) it seems that there are **many** groups of order 192 with isomorphic holomorphs.

The largest 'cluster' of these is a family of 52 different groups.

One final observation to make is that for those $\{G_k\}$ with isomorphic holomorphs, the fact they have isomorphic holomorphs implies that they mutually normalize each other.

Thank you!

Appendix - Proving the (Bi-)Skew Brace Relations Explicitly

What we wish to demonstrate is that the set $X = \{t^i x^j \mid i \in \mathbb{Z}_2, j \in \mathbb{Z}_{2n}\}$ together with $(X, \star) \cong Q_n$ and $(X, \circ) \cong D_{2n}$ satisfy the skew-brace relations

$$a \circ (b \star c) = (a \circ b) \star a^{-1} \star (a \circ c)$$

which we shall denote

$$D(\mathsf{a},Q(\mathsf{b},\mathsf{c}))=Q(Q(D(\mathsf{a},\mathsf{b}),Q^{-1}(\mathsf{a})),D(\mathsf{a},\mathsf{c}))$$

and similarly if $(X, \star) \cong D_{2n}$ and $(X, \circ) \cong Q_n$ which we shall denote

$$Q(a, D(b, c)) = D(D(Q(a, b), D^{-1}(a)), Q(a, c))$$

so that the two group operations on X yield a bi-skew brace.

$D(a, Q(b, c)) = Q(Q(D(a, b), Q^{-1}(a)), D(a, c))$

Let $a = t^{i_1} x^{j_1}$, $b = t^{i_2} x^{j_2}$, $c = t^{i_3} x^{j_3}$ then

$$D(a, Q(b, c)) = t^{I_L} x^{J_L}$$

 $Q(Q(D(a, b), Q^{-1}(a)), D(a, c)) = t^{I_R} x^{J_R}$

$$\begin{split} &I_{L} = i_{1} + i_{2} + i_{3} \\ &I_{R} = i_{1} + i_{2} + i_{3} \\ &J_{L} = j_{3} + (-1)^{i_{3}} j_{2} + i_{2} i_{3} n + (-1)^{i_{2} + i_{3}} j_{1} \\ &J_{R} = j_{3} + (-1)^{i_{3}} j_{1} + (-1)^{i_{1} + i_{3}} \left((-1)^{i_{1} + 1} j_{1} + i_{1} n + (-1)^{i_{1}} \left(j_{2} + (-1)^{i_{2}} j_{1} \right) + (i_{1} + i_{2}) i_{1} n \right) \\ &+ i_{2} (i_{1} + i_{3}) n \end{split}$$

That $I_L = I_R$ is obvious, and for the difference:

$$\begin{aligned} J_L - J_R &= (-1)^{i_3} j_2 + i_2 i_3 n + (-1)^{i_2 + i_3} j_1 - (-1)^{i_3} j_1 - \\ & (-1)^{i_1 + i_3} \left((-1)^{i_1 + 1} j_1 + i_1 n + (-1)^{i_1} \left(j_2 + (-1)^{i_2} j_1 \right) + (i_1 + i_2) i_1 n \right) \end{aligned}$$

it's basically a case by case analysis to show that this is always 0

$Q(a, D(b, c)) = D(D(Q(a, b), D^{-1}(a)), Q(a, c))$

Similarly,
$$Q(a,D(b,c))=t^{I_L}x^{J_L}$$
 and $D(D(Q(a,b),D^{-1}(a)),Q(a,c))=t^{I_R}x^{J_R}$ where

$$\begin{split} I_{L} &= i_{1} + i_{2} + i_{3} \\ I_{R} &= i_{1} + i_{2} + i_{3} \\ J_{L} &= j_{3} + (-1)^{i_{3}} j_{2} + (-1)^{i_{2} + i_{3}} j_{1} + i_{1} (i_{2} + i_{3}) n \\ J_{R} &= j_{3} + (-1)^{i_{3}} j_{1} + i_{1} i_{3} n \\ &+ (-1)^{i_{1} + i_{3}} \left((-1)^{i_{1} + 1} j_{1} + (-1)^{i_{1}} \left(j_{2} + (-1)^{i_{2}} j_{1} + i_{1} i_{2} n \right) \right) \end{split}$$

and here too, we can show that $I_L = I_R$ and $J_L = J_R$.

For the groups

$$G_{1} = \langle t, x, z \mid t^{2}, x^{p^{n}}, z^{4}, txt^{-1}x, [t, z], [x, z] \rangle$$

$$G_{2} = \langle t, x, z \mid t^{2}, x^{p^{n}}, z^{4}, txt^{-1}x, tzt^{-1}z, zxz^{-1}x \rangle$$

we can also demonstrate that the (bi-)skew brace relations hold.

In both cases, each group consists of expressions of the form

$$X = \{t^i x^j z^k \mid i \in \mathbb{Z}_2; j \in \mathbb{Z}_{p^n}; k \in \mathbb{Z}_4\}$$

and so any potential bi-skew brace structure is defined on this single set X.

We now need to determine the multiplication formulae, which arise from the presentations above.

In G_1 the following holds:

$$(t^{i_1}x^{j_1}z^{k_1})(t^{i_2}x^{j_2}z^{k_2}) = t^{i_1+i_2}x^{j_2+(-1)^{i_1}j_1}z^{k_1+k_2}$$

which is quite similar to that for D_{p^n} obviously since $\langle z \rangle$ is central in G_1 . We easily deduce from this that

$$(t^{i}x^{j}z^{k})^{-1} = t^{i}x^{(-1)^{i+1}j}z^{-k}$$

which we shall need later.

In G_2 the following holds:

$$(t^{i_1}x^{j_1}z^{k_1})(t^{i_2}x^{j_2}z^{k_2}) = t^{i_1}x^{j_1}t^{i_2}z^{(-1)^{i_2}k_2}x^{j_2}z^{k_2}$$

= $t^{i_1+i_2}x^{(-1)^{i_2}j_1}z^{(-1)^{i_2}k_1}x^{j_1}z^{k_2}$
= $t^{i_1+i_2}x^{(-1)^{i_2}j_1}x^{(-1)^{(-1)^{i_2}k_1}j_2}z^{(-1)^{i_2}k_1}z^{k_2}$
= $t^{i_1+i_2}x^{(-1)^{i_2}j_1+(-1)^{(-1)^{i_2}k_1}j_2}z^{(-1)^{i_2}k_1}z^{k_2}$
 \downarrow since $k_1 = -k_1 \pmod{2}$
= $t^{i_1+i_2}x^{(-1)^{i_2}j_1+(-1)^{k_1}j_2}z^{(-1)^{i_2}k_1+k_2}$

which is more complicated due to z being non-central in G_2 .

And we also deduce that

$$(t^{i}x^{j}z^{k})^{-1} = t^{i}x^{(-1)^{i+k+1}j_{1}}z^{(-1)^{i+1}k}$$

which is the inverse for G_2 .

So for the set X, if we define (for some notational consistency with the above examples) $D = (X, \circ) \cong G_1$ and $Q = (X, \star) \cong G_2$ then the skew brace relation

$$a \circ (b \star c) = (a \circ b) \star a^{-1} \star (a \circ c)$$

again translates to the 'function' formulation

$$D(a, Q(b, c)) = Q(Q(D(a, b), Q^{-1}(a)), D(a, c))$$

as we used above.

And in reverse, if we let $D = (X, \star) \cong G_1$ and $Q = (X, \circ) \cong G_2$ which we express in function form as

$$Q(\mathsf{a}, D(\mathsf{b}, \mathsf{c})) = D(D(Q(\mathsf{a}, \mathsf{b}), D^{-1}(\mathsf{a})), Q(\mathsf{a}, \mathsf{c}))$$

and we wish to verify both to confirm that we have a bi-skew brace structure on X arising from these two groups.

We explore the first of the two brace relations. Let $a = t^{i_1}x^{j_1}z^{k_1}$, $b = t^{i_2}x^{j_2}z^{k_2}$, $c = t^{i_3}x^{j_3}z^{k_3}$ then

$$D(a, Q(b, c)) = t^{I_L} x^{J_L} z^{K_L}$$

 $Q(Q(D(a, b), Q^{-1}(a)), D(a, c)) = t^{I_R} x^{J_R} z^{K_R}$

where

$$\begin{split} I_{L} &= i_{1} + i_{2} + i_{3} \\ I_{R} &= i_{1} + i_{2} + i_{3} \\ \downarrow \\ I_{L} - I_{R} &= 0 \\ J_{L} - J_{R} &= (-1)^{i_{3}} j_{2} + (-1)^{i_{2} + i_{3}} j_{1} - (-1)^{2 i_{1} + i_{3}} j_{2} - (-1)^{2 i_{1} + i_{3} + i_{2}} j_{1} + \\ & (-1)^{2 i_{1} + i_{3} + 2 k_{1} + k_{2}} j_{1} - (-1)^{k_{2} + i_{3}} j_{1} \\ &= (-1)^{i_{3}} j_{2} + (-1)^{i_{2} + i_{3}} j_{1} - (-1)^{i_{3}} j_{2} - (-1)^{i_{3} + i_{2}} j_{1} + \\ & (-1)^{i_{3} + k_{2}} j_{1} - (-1)^{k_{2} + i_{3}} j_{1} \\ &= (-1)^{i_{3} + k_{2}} j_{1} - (-1)^{k_{2} + i_{3}} j_{1} \\ &= 0 \\ K_{L} - K_{R} &= (-1)^{i_{3}} k_{2} - (-1)^{i_{3}} k_{2} \\ &= 0 \end{split}$$

so indeed $a \circ (b \star c) = (a \circ b) \star a^{-1} \star (a \circ c)$. Timothy Kohl (Boston University) Isomorphic Holomorphs and Bi-Skew Braces For the reversed case, we consider, for a, b and c as above, the expressions:

$$Q(a, D(b, c)) = t^{I_L} x^{J_L} z^{K_L}$$

 $D(D(Q(a, b), D^{-1}(a)), Q(a, c)) = t^{I_R} x^{J_R} z^{K_R}$

to see if $I_L = I_R$, $J_L = J_R$, and $K_L = K_R$ but these verifications aren't too difficult.

We have

$$I_{L} = i_{1} + i_{2} + i_{3}$$

$$I_{R} = i_{1} + i_{2} + i_{3}$$

$$\downarrow$$

$$I_{L} - I_{R} = 0$$

$$J_{L} - J_{R} = (-1)^{i_{2} + i_{3}} j_{1} + (-1)^{k_{1} + i_{3}} j_{2} - (-1)^{i_{3}} j_{1} + (-1)^{2 i_{1} + i_{3}} j_{1} - (-1)^{2 i_{1} + i_{3} + i_{2}} j_{1} - (-1)^{2 i_{1} + i_{3} + k_{1}} j_{2}$$

$$= (-1)^{i_{2} + i_{3}} j_{1} + (-1)^{k_{1} + i_{3}} j_{2} - (-1)^{i_{3}} j_{1} + (-1)^{i_{3}} j_{1} - (-1)^{i_{3} + i_{2}} j_{1} - (-1)^{i_{3} + k_{1}} j_{2}$$

$$= 0$$

$$\begin{split} \mathcal{K}_L - \mathcal{K}_R &= (-1)^{i_2 + i_3} k_1 - (-1)^{i_2} k_1 + k_1 - (-1)^{i_3} k_1 \\ &= (-1)^{i_2 + i_3} k_1 + (-1)^{i_2 + 1} k_1 + k_1 + (-1)^{i_3 + 1} k_1 \\ &= \begin{cases} (-1)^{i_3} k_1 - k_1 + k_1 + (-1)^{i_3 + 1} k_1 & i_2 = 0 \\ (-1)^{1 + i_3} k_1 + k_1 + k_1 + (-1)^{i_3 + 1} k_1 & i_2 = 1 \end{cases} \\ &= \begin{cases} k_1 - k_1 + k_1 - k_1 & i_2 = 0, i_3 = 0 \\ k_1 + k_1 + k_1 + k_1 & i_2 = 1, i_3 = 1 \end{cases} \\ &= 0 \text{ (recall that } k_1 \in \mathbb{Z}_4) \end{split}$$

so indeed $a \star (b \circ c) = (a \star b) \circ a^{-1} \circ (a \star c)$.

Uniqueness of Hopf Galois structure of separable field extensions. *Comm. Algebra*, 24:3217–3228, 1996.

L. Childs.

On the Hopf-Galois theory for separable field extensions. *Comm. Algebra*, 17(4):809–825, 1989.

L. Guarnieri and L. Vendramin.
 Skew braces and the yang baxter equation.
 Math. Comp., 86:2519–2534, 2017.

T. Kohl.

Classification of the Hopf Galois structures on prime power radical extensions.

J. Algebra, 207:525-546, 1998.

D. König.

Über graphen und ihre anwendung auf determinantentheorie und mengenlehre.

Math. Ann., 77:453-465, 1916.